
TRSDOS&
DISK BASIC
Reference
Manual

Contents
1. General Information
2. Mini Disk Operation
3. TRSDOS Overview
4. TRSDOS Commands
5. Extended Utilities

Catalog Number 26-2104

6. TRSDOS Technical Information
7. DISK BASIC
8. Appendices

Index

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK ~ A DIVISION OF TANDY CORPORATION

TRSDOS&
DISK BASIC

Reference
Manual

For the Radio Shack TRS-80
Disk Operating System
TRSDOS Version 2.1
DISK BASIC Version 1.1

ltad10 lhaeK
~ A DIVISION OF TANDY CORPORATION

One Tandy Center
Fort Worth, Texas 76102

First Edition - 1979

All rights reserved. Reproduction or use, without express
permission, of editorial or pictorial content, in any man
ner, is prohibited. No patent liability is assumed with
respect to the use of the information contained herein.
While every precaution has been taken in. the preparation
of this book, the publisher assumes no responsibility for
errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information con
tained herein.

© Copyright 1979, Radio Shack

A Division of Tandy Corporation,
Fort Worth, Texas 76102, U.S.A.

Software Copyright Notice

All TRSDOS and DISK BASIC software is copyrighted by
Radio Shack. Radio Shack grants each TRSDOS user the
privilege of making BACKUP diskettes of TRSDOS and
DISK BASIC, provided such diskettes are solely for per
sonal use.

Any other duplication of TRSDOS or DISK BASIC soft
ware, in whole or in part, in print or in any other storage
and-retrieval system, is forbidden.

Printed in the United States of America

To Our Customers
This is a reference manual, and its organization reflects the relationship between
TRSDOS and DISK BASIC. TRSDOS is the fundamental software, so it's described
first. DISK BASIC is a language supported by TRSDOS, so it's described after
TRSDOS. (If other languages are supported later, they'll plug right in to this manual
along with DISK BASIC.)

But don't think you have to read the manual in strict sequence. If you're an old hand at
LEVEL II BASIC and you want to start out with DISK BASIC, go ahead and skip to
Section 7. You can refer back to the TRSDOS sections later on when you're ready or
when you need them.

We hope you enjoy exploring this powerful new computer system!

'Read
Sec:tions I ~ 2.,

H-ow to Use Th·,s Book

mak.e p

..__-•-- TRSDos Ba,kup
j

YES

'Read and. use
Section 7

No

Read ancl use.
Sed,on'5 3-8

YES

General
Information

Contents of This Section

Introduction 2
Notation Conventions 3
Versions and Releases 6

Section 1 - Page 1

General Information

Introduction
This book is a combined operation and reference manual for the
TRS-80 Disk Operating System. It will tell you how to operate the
hard ware and how to use the software.

For many of you, there will be more than enough information. ("All
I want to do is use the Computer, not understand it!") Don't worry,
this book is designed so that you can start programming in DISK
BASIC (if that's what you want to do) right away. All you have to do
is read the chapter on Mini Disk Operation . .. skim through TRSDOS
Overview and TRSDOS Commands ... and on to DISK BASIC.

But DISK BASIC is just one aspect of TRSDOS. It's not a
part of TRSDOS, but a program that TRSDOS executes. Using
DISK BASIC without any awareness of the capabilities of TRSDOS
is rather like riding in a Pullman car without any knowledge of the
engine, freight cars, diner and other parts of a train. It's true that
TRSDOS will do all that's necessary to let you ride comfortably along
in BASIC; but eventually you're going to want to have a say in where
the train goes, what its schedule is, and what goes in all those freight
cars. That's when you need to understand TRSDOS.

The illustration below shows the relationship between the Computer,
Expansion Interface and Mini Disk Drives.

3 2 ·O

The first drive(Drive 0) always contains the TRSDOS
diskette, which is pre-recorded with the Operating System
software: an executive program, and several auxiliary
programs, including DISK BASIC. The executive program
is loaded into the first 4K bytes of RAM, and stays there
while TRSDOS is in control. The auxiliary programs

i.===:a==sil 1,="="'==;1 rr="="'=9),--..,.,.....,. are loaded as needed.

Second, third and fourth drives can contain data
diskettes, fur storing your programs and data.

The Expansion Interface contains the real-
time clock, disk controller IC, and optional
extra RAM (addresses above 32767).

The Keyboard/Computer contains a built-in (ROM)
program which takes over at power-up, and loads
the TRSDOS executive program from the system
diskette (in Drive 0). If the Mini Disk equipment is
not connected, this ROM program can transfer control
to LEVEL II BASIC.

1-2

General Information

One section of this book you should definitely become familiar with
is the Glossary. We've tried to give definitions for all the "computer
words" and everyday words with special meanings in this book. Even
if you've heard all the terms, you'll gain some useful information
from the Glossary, because it's customized for the TRS-80.

First you make a BACKUP ...

You received one TRSDOS diskette with your Mini Disk drive 26-1160.
This diskette contains the operating system software. Without this
disk, you haven't got a disk operating system.

So, your first disk operation ... before you remove the write protect
tape from the TRSDOS diskette ... should be to duplicate TRSDOS
onto a blank diskette. You'll find abbreviated instructions for making
a duplicate (BACKUP) of your TRSDOS diskette at the end of the
Mini Disk Operation chapter.

Notation Conventions
In descriptions of syntax for commands, statements and dialog with
the Computer, we'll use the following conventions for clarity and
brevity.

'*"*' < SPACE>

CAPITALS and
punctuation

This special symbol represents a mandatory
blank space. Unless it is specified, any
blanks that appear in the syntax are optional.
Example:
DIR\/>: 1
The blank space is rcq uired after the R.

"Press the l@~U•;I key."

"Press the space-bar."

Indicate material which must be entered
exactly as it appears. The only punctuation
symbols not entered are the special cases
(brackets and triple-period ...) explained
below.
Example:
LO AD"filespec"
Only the command LOAD and the quote
marks are entered verbatim; you supply
the JUespec.

1-3

General Information

Notation, continued

SCREENED CAPITALS Represent input you supply, upon prompt
ing from the Computer. This convention
will only be used where necessary to
distinguish between Computer prompting
and user input.

lowercase italics

[l

var([, ...])

1-4

Example:

Hm-~ MAr-i'-r' FI LES? 5 IMO*•
The Computer asks the question, and you
answer it.

Represent words, letters or values you
supply from a set of acceptable values for
that situation.
Example:
var= exp
A variable name goes on the left, and an
expression goes on the right.

Brackets enclose optional material.
Example:
CLOSE[fzlenum]
filenum (the file number) is optional after

CLOSE. The brackets are not actually
typed in.

The triple-period symbol inside brackets
indicates that preceding items in the
brackets may be repeated.
Example:
INPUT["prompting message";] var[,var ...]
The INPUT variable-list may include
more than one variable. The periods are
not actually typed in.

Signifies an array. If no commas are
placed inside the parentheses, a
one-dimensional array is intended;
1 comma indicates a two-dimensional
string array; etc.
Examples:
A$(,) indicates a two-dimensional
string array.
B 1 () indicates a single-dimensioned
array.

General Information

Notation, continued

exp

var

nmexp

nmvar

exp$

var$

con

nmcon

con$

numerical
suffixes

String or numerical expression

String or numerical variable name

Numerical expression, including constants,
variables, functions

Numerical variable name

String expression, including constants in
quotes, variables, functions and operators

String variable name

Constant, either string or numerical

Numerical constant

String constant

Attached to distinguish between different
arguments and parameters of the same type.
Example:
COPYV>filespecl l/>TO'¢>filespec2

1-5

General Information

Versions and Releases
Some of you may be a little confused about the terminology,
"Version X.Y". The "X" and "Y" will change as TRSDOS is
updated, so here's an explanation.

A new version represents a substantial expansion of the previous
version. For example, new utilities, high-level languages, etc., might
be included in a new version. Such versions are numbered by the
integers l, 2, 3,

A new release, on the other hand, is simply an update of the previous
release of a given version. This later release generally includes wider
implementations and enhancements of commands and fixes for any
problems in the earlier release. The releases are numbered by
decimal fractions, .1, .2, .3,

Therefore, when we refer to Version 2.1, that's short for the first
Release of Version 2.

Note: In its original printing, this Manual describes TRSDOS
Version 2.1, and DISK BASIC Version 1.1. The Manual will be
updated as required by later versions and releases.

1-6

Mini Disk
Operation

Contents of This Section

Introduction 2
Connection . 3
Operation . 5
Care of Diskettes . 8
Specifications 1 O
Schematics 11
Making a TRSDOS BACKUP 16

H
A
R
D w
A
R
E

Note: Abbreviated instructions for making a BACKUP (duplicate) of your TRSDOS
software diskette are included at the end of this section. Your very first disk operation
should be to make such a "safe copy", following the abbreviated instructions.

Section 2 - Page 1

Mini Disk Operation

Introduction
The TRS-80 Mini Disk drive is a mass storage device custom
manufactured for use with the TRS-80 Microcomputer. It combines
the compactness of a cassette recorder with the high-speed, reliable
data access of the larger disk drive_ units. Information is magnetically
recorded on and read from flexible ("floppy") diskettes.

In simplified terms, the Mini Disk consists of a magnetic read/write
head, similar to that on a tape recorder; a stepper motor to move the
head across the diskette surface; a drive motor and hub assembly to
rotate the diskette; and the necessary logic circuitry to control
the read/write process and the motor speed. See Figures 1 and 2.

There are two types of drives,
distinguished by their Radio
Shack Catalog Numbers,
26-1160 and 26-1161. Your
disk system must include one
(and only one) 26-1160 and
may include up to three
26-1161 drives.

Included with 26-1160

Drive unit: lncorporates
special terminating resistors
not present in the 26-1161
units.

Interconnect cable: For con
nection of 26-1160 and up to
three optional 26-1161 drives
to the Expansion Interface.

1 TRSDOS diskette: Contains
the operating system software,
utilities, DISK BASIC, etc.

Included with each 26-1161

Drive unit: Does not incorpo
rate terminating resistors.

Blank diskette: Can be
formatted or backed up for
use with TRSDOS.

Figure 1. Mini Disk Drive.

MAGNEflC READ/WRITE Hfi:AO

W~ ITE PROTECT SWITCH

I'
I
I
I
I
I
I

INOEX/HCTOAI
DETECTOR I

DfllVEMOTOfl

Figure 2. Functional components in a Mini Disk drive.

2-2

Mini Disk Operation

Connections

The power to all components in the TRS-80 system should be "off'
while you make connections.

Look at the ribbon-type connector cable included with your 26-1160
Mini Disk drive. Notice that the cable has four edge card connectors
through its length, and a single connector at the other end. Connect
the single plug to the edge-card jack on the left rear of the
Expansion Interface, as shown in Figure 3. Be sure the plug is
oriented so the cable exits from the bottom.

Before connecting the Drive(s) to the cable, note the following rules:

l) 26-1160 must always be the "terminal" or final drive on the
cable; that is, of all your drives, it must always be the farthest
away from the Expansion Interface. This is because it includes
the terminating resistors mentioned above.

2) The connector closest to the Expansion Interface must always
be plugged in to a drive. The other connectors can be
"empty".

/_

LEFT REAR OF EXPANSION INTERFACE
!MINI-DISK CONNECTION I

______._ _ ____.___ ~

0 0
...J -----------------~ SINGLE PLUG

H ----------------- ri
........................... ====== =41

CABLE MUST EXIT AT BOTTOM

FOR PROPER CONNECTION.

I

-
RIBBON TYPE CONNECTOR CABLE

Figure 3. Connecting the ribbon cable to the Expansion Interface.

EDGE CARD PLUGS

2-3

Mini Disk Operation

Connect each Mini Disk
unit to the cable, taking
care to orient the plug
properly as shown in
Figure4. inside each
plug is a small plastic
connector. If the plug
doesn't mate properly,
check to see that the
plug is oriented so the
pin lines up with the
slot.

Examples:

MtNI-DISt1;lAU .. Vll Wl-tf-f----

ON/Of f SWITCH

Figure 4. Connecting the cable to the Mini Disk.

If you have just one drive (must be 26-1160), then connect it to the
first connector plug, so as not to leave any empty connectors between
the Drive and the Expansion Interface. Leave the last three connectors
empty.

If you have two drives, then connect 26-1161 to the first connector
and 26-1 160 to the second connector. Leave the last two connectors
empty.

Figure 5 shows a Mini Disk system with four drives connected.

Connect each Mini Disk to a source of 120 V AC, using the power cord
provided.

Figure 5. A complete four-drive Mini Disk System.

2-4

Mini Disk Operation

Drive Numbering

TRSDOS requires at least one Mini Disk drive, and can handle up to
four. Under TRSDOS, these drives are referred to as drives 0, 1,2 and 3
(where drive O is closest to the Expansion Interface, and drive 3 is
farthest away). See Figure 5. These designations cannot be changed -
they are built into the ribbon cable connector.

When the Computer attempts a bootstrap operation (power-on or
reset), it will automatically attempt to load TRSDOS from drive 0.
Therefore a TRSDOS diskette must be in drive O when you power on
or reset the Computer. In fact, the TRSDOS diskette should always
remain in drive O while TRSDOS is in use, except in special cases.

Operation
Before powering on the disk system, you need to understand a few
things about how the drives work.

The disk drive does not rotate continuously while it is "on". It only
rotates when a Motor-On signal is sent from the Computer. If more
than one Mini Disks are connected, the Motor-On signal will turn them
all on and off simultaneously, even if only one of them is to be
accessed by the Computer. This signal is sent about a second before
the Computer accesses the disk, to allow the drives to reach operating
speed.

While the Computer is accessing one of the Mini Disks, the red light
(LED) on the front of that Mini Disk will remain lit.

Caution: Do not open a drive latch to insert or remove a diskette
while the drive motors are running (i.e., while one of the LEDS
is lit).

How a Diskette Works

A diskette is simply a circular plastic sheet, one side of which is
coated with a highly polished layer of ferromagnetic material. Similar
to a 45 RPM record, the diskette has a large spindle hole to
accommodate the drive hub, and a small hole which indexes the
diskette as it rotates.

2-5

Mini Disk Operation

A blank diskette (either brand-new or magnetically erased) contains
no information. TRSDOS has a special utility program (called
FORMAT) which takes a blank diskette and organizes it into
concentric "tracks" and subtracks called "sectors". See Figure 6.
These divisions are like the numbered pages in a book. (FORMAT
also places a small amount of system and bookkeeping information
onto each diskette. For more information, see Extended Utilities,
FORMAT.)

TRACK 1, SECTOR 8

DATA 256BYT~

"

r•ooooo

TRACK/SECTOR ID FOR
TRACK 1, SECTDR 8

3

7

DIRECTION OF ROTATION

Figure 6. Track/sector organization on a formatted diskette.

Each diskette is permanently sealed inside its jacket to prevent
bending, creasing, scratching or contamination of the diskette
surface. When the diskette is loaded into the drive, a hub assembly
grips the diskette; when the drive motor is on, the diskette
rotates inside its jacket. The specially treated jacket lining cleans
the diskette as it rotates.

a

Notice that the TRSDOS diskette comes with a piece of tape across
the top (above the label). This tape covers the diskette's write
protect notch. With the notch covered, the diskette is physically
protected from being written to. (A "write operation" is any
alteration of the data stored on the diskette. In contrast, a "read"
does not alter the information - merely accesses it.)

2-6

"

Mini Disk Operation

Remove the tape from the diskette if you intend to write to it; and
place a tape over the notch on any diskette you don't want to
accidentally write to.

See Figure 7.

WRITE PROTECT TAB

Figure 7. A diskette; a write-protected diskette; a diskette in
protective storage envelope.

Inserting a Diskette

1. Be sure the Mini Disk drive is stopped when you insert or
remove a diskette.

2. Open the front of the Mini Disk drive. Gently insert the diskette
into the vertical slot, with the write protect notch up and the
diskette label to the right (Figure 8). Be sure not to close the
latch until the diskette is inserted all the way and seated
properly, or you may damage it.

3. Close the Mini Disk latch. This causes the spindle-hub assembly
to grip the diskette. If the door doesn't close easily, don't
force it. Re-insert the diskette and try again.

Figure 8. Inserting a diskette.

2-7

Mini Disk Operation

Power-Up Sequence
You should always power up the peripherals (disk drives, printer,
Expansion Interface, etc.) first, and the TRS-80 CPU/keyboard last.
Also note that turning the peripherals on and off while the Computer
is on may confuse the system and cause abnormal operation. Work
done on a currently open file may be lost.

The power switch for each Mini Disk is on the rear of the unit. Power
is "on" when the toggle switch is in the up position, and "off' when
the switch is down.

1. Turn on the Expansion Interface.
2. Turn on the Mini Disk drives: first the terminal drive, 26-1160,

then the other drives, if any.
3. When you turn on the TRS-80 CPU/keyboard, the Computer

will instantly attempt to load TRSDOS from Drive 0. · So before
t~rning on the CPU, carefully insert the TRSDOS diskette into
drive Oas explained above under "Inserting a Diskette". You
may also want to insert formatted diskettes into the other drives
now; however, these may be inserted any time the drives are
stopped.

Another approach would be to plug all devices into an adequate
power strip and tum them all on with a single switch.

Care of Diskettes
Diskettes are precision recording media. Handle them very carefully
to get maximum life from each diskette. In general, follow the special
handling precautions used with both tape cassettes and high fidelity
records.

1. Keep the diskette in its storage envelope whenever it is not in
one of the drives. Don't leave the diskettes in the drives
needlessly, for example, when the system is turned off.

2. Keep diskettes away from magnetic fields (transformers, AC
motors, magnets, etc.). Strong magnetic fields will destroy
information on the diskettes.

3. Handle the diskette by the jacket only - don't touch any of the
exposed surfaces. Don't try to wipe or clean the diskette surface;
you might scratch it and destroy data.

4. Keep the diskette away fr~m heat and direct sunlight. See the
"Specifications" section below for storage temperature range.

2-8

Mini Disk Operation

5. Avoid contamination of the diskette with cigarette ashes, dust
or other particles.

6. Do not write directly on the diskette jacket with a hard-point
device such as a ball point pen or lead pencil, as this could
damage the recording surface. Use a felt tip pen only.

7. Before inserting a diskette into the Mini Disk drive, be sure the
motor is off (no LEDs lit and no motor sound).

8. Store diskettes in a vertical file folder or on a shelf where they
are protected from pressure to their sides Uust as phono
records are stored).

If you have problems ...

Frequent occurrences of disk 1/0 errors during disk accesses
may indicate a worn diskette or some problem with the Mini Disk
drive or other hardware. Try to isolate the problem by swapping
drives and diskettes as available.

If you have a repeated problem with a particular diskette, try copying
the accessible files onto another diskette. Then erase the faulty
diskette with a bulk eraser (Radio Shack Catalog Number 44-210)
and attempt to format it (see Extended Utilities, FORMAT).

During the format process, the diskette will be checked for flaws,
and any defective tracks will be locked out, leaving you with an
otherwise usable diskette.

If the Mini Disk drive seems to be at fault (errors during access to
several diskettes), bring it in to your local Radio Shack store for
servicing.

2-9

Mini Disk Operation

Specifications - Drives and Diskettes

Storage capacity (bytes available to user)
Formatted diskette 83,060
TRSDOS diskette 58,880

Diskette Organization
Tracks per diskette

Bytes per track
Sectors per track
Bytes per sector

Data transfer rate

Average access time
Drive motor start time

Required media

Diskette life*

Data storage life
on diskettes

Diskette storage temperature

Size
Drive unit

Diskettes (jacket size)

Power requirements

35

2560
10
256

12. SK bytes/second

750 ms
1 second

Radio Shack Flexible Diskettes,
Catalog Number 26-305, or
26-0405 (pkg of 3)

2.5 x 106 passes/track (110 hrs)
5 years estimated actual use

20 years

50-125 deg.F (12-52 deg.C)

6-3/8 X 3-J/2 X 13-1/4"
(16.2 x 8.4 x 33.7 cm) HWD
5-1/4 X 5-1/4 X 1/32"
(13.3 x 13.3 x 0.08 cm) HWD

120 VAC, 60 Hz, 35 Watts (28 VA)

* Typically, diskette life will be limited by improper handling.
Follow handling recommendations listed above for maximum
diskette life.

2-10

Schematic Diagrams
Control Logic

~-2.
'='·=I<'.

11.e.w 12/W I ____________ 10_1 .. _...__....:1,,,_3~

XS40I

12/IAJ '-1·
'X~40\

CR2.

c..12.?,

fJ.
15\J
2.0°/o

"'
Zt>..

12/w '2.----------------4~-~1------_.£L.J
'><'SAO\

+- 1:2E-AD E:--~ l>-BLE: -----------,
YS4ol

+sv
0

I,?=,
9.0'9K

\/6VJ
I O /o L-__ _._ _ __..__ -\--12 I/ A.

+5V

L..I
C.80

c.4
'"eo~ aoov
€,•/•

-=- L4
'-50

.. ~,., ..
128

1..:2 845
ISO 1/81/J

1°/o

c.s
~opi
&oov

r2q,+1z.-.J1>. 5°/0
64-S

I..~ 1/BW l'=O l"/o

C.8
-+SV

i·' 1229
510

+SI/

z 31=1>"'3 ____________ .::c3.=.0->J._

+ PULL LJP ,Z
>lS.4ol

+ PULL UP
1'S4o\

+ wR1,e. Pl2.o,.
-:-)(SAO\

+ ou1Pu1 EIJA.~LE::.---------------------------+------------------------------+!~l'V'J>.:..;.... ___________,!:f.=6~- - wR1 Tc PRo,e.c.T
:X-5401 Cl9 1·1

+12v {
+IZV

LS
10,11, 100
121~ +l2VA

+ C.'Zf> cz,9 4.7
10°/o o.l

+1'2Vl2"'\'IJ 2

G!UD
i'i'.t~' TYPE PCS.

1400 se.

C:!IJD
I ,l,lRU3/\ 7AO'Z !!>B

74.LS14 2.E

+5\/ Ri tJ 3 74-07 U,4D

C.Z.1 Cl4,1':,

+sv--W4
14.7 1i~~1~-=-+ IO"!o

0.1
+sv

743?, '2D

74~8 ZI=

7474 ze,1D

7-4195 ~D

2-11 14L'=>'2'2I ?,C

R&'=>l~TOl2. A,.;:zl2A,,"f"

VA.LUE::- l"'O':>I T I O N ._HJU'::>E:-D

"!>~"- RP'l, ?>

c:.,e,on RPI

1'::,0n. R.P':>
\\o(. 12P4

u.iu~eo "J;fo ~3- p~~' T'<PE

I 4- 1 - 7S4'5'38

14 7 - LM~I\IJ

14 1 - ~~'i>qt""

14 1 - 748/o

14 1 - 9"02
14 1 - ZQi'2'2'2'2

IDI 6 14 ., - 2. Gl.,-'2 qO':,

lw 8 - \ '=>O ,,,n_

I~ 8 - MF'lll~1'2.",

Po~. u\.lu~i:> (~P~5\
~F B
4A -
3.!.. -
4C. 4"-'2. 14

4B I~
'2,/:,,.. -
IC. -
IE '2. -

4-1=' -

11~,'t,'(,
4
I

::,

1
8

-
-
-
-

1i~$
-
&
10 -
-
-
-
-
-

P--~-------------'B"'-"'L-- -11.l o,;;;)(./ SEC'rOR.

C:31
Cl<.19
L$
Q'2
1<42
RPS
TPI?)

C'Z0/2~,'24

IIJDEx/Sl:C.TOR. L&D

U0"T!:'51 UI.JL..cSS OTl-4cRWl':>E SPECll=IED,

I. i:>.LI.. C.A.Pt.cqoR.<:, to.~E If..) f/\lC.12.0-
FI:>. R.I>. DS, 5o✓_ +BO, - 20 °/c •

Z. AL.L DIODE'S A.R~ 11.:>414e,.
~. A.LL I1.lDUC.TOR"<:> 1>.RI:. 1'-l M1C.RO

\-H~WR1&S! I0°ic;.
4. I.L..L R.&":,1~,TOR<:, />.RE:. IW O\.\1,,\'S;

\"/4W! ':::, 0 /o.
s. D-0 1 UD\C.l>.11=':, Sl--ll)~ S8-E:<:TAet..1::-

0PT101-,,J.

to. * 1WD1C.t.l"E.5 ~I !-w- l.lDICA.iES J2;
-,W- \.._,DIC.t>.TE<:. .:)~;-w- l~DIC.tqE':> .)4.

[J] COl\i\POt-.lEi-,,J, f-lOT 11--l':>TA.LLED.

8 PitJ 4 01= IC I':, C;,l.?OU'-ID,

2-12

Read/Write Logic -+5Y -t6V

11 l'I. 10 •, t, ~o
-Ho,oR. ow

•~ • • < '> IE
'> : > > : 2c.

r---------.---'1-I ... '2

zc
~---+--.:..:ll_.111--.. 10

5

.. . . .
1211
z.z,:,i::

11PI~

•/8'N
I 0 / o .---'4---+-__ ~V\.f\ ..

VY

I

2 \C::..

~:,

3

~Ri9
> 20K

I<.=-,
'v - MTR ol-.l

I- R/\Al I

l~ __ v ____)('5400

+PULL LIP '2.------------------+-+--+---+---lf---------~-~\ 4:, 2 • 12 \C 14 <;_RS c,m XS4oo 9---'-+---'V'IAr--i-----'\RZo~.Ar-------~~(\ _/lr'-)~..------------------1>-....._~v•~
ZE QI(.. <., ~ 4 '(:C7 ~RIB

-WRITE. DA7'A ---i~"t"---2_2 ____________ -+---i---+_.....,>-_~1~0-<Jrr>-'12"----+-'Ci fJ~~ '--'--+---~V'-rv--+---, !lf/ I~ '>ZoK -+SY ~----->c:s400

2C. I o/ 0 -:.= ,------< 1224
~---1-~---\-=3~> 111--..>-'\2=--t------A'\/V'AA_,---------------+--------------') \<23 1'5

I ...
RP3

5, ..
v.

l
R/W '2.

- WR Ii E Ci t,:,: 'ec

+ WRIT I=- P~o1 .
-X5400

-DR\\/E. <:,E:L.E:C:T I

- Dl2.\VE SE:L8:..T ~

- STE:P

D\RfcCTIO>-.l

+ PULL UP I
X.~4.00

- TRl>.CK. eERo
-.i.o.

+ Tl<t:>.CK 'e&RO
lj. C..

2-13

24

, 10 1.

' 1'2. ~

4

I~

12
.J""""1_,

D•::,2.

I~

1 •• 9oc;., '?1/e,'t-/
+12Y > 1/e,w >1 •/o

-

-tSV

I [.0>
1 +12~ ~r,.B=-----------"1•~~'2,/"•'2~---~l;<..f~/?-lo \~c. c.R9

i;,. iC. 214 •(""'-e,----l""'M------=-""-'mW'- E.12.~SE
i/8W - V

'> '>

8
9.Jl2DJr1-0---+---<1.._-----+----+-t

~

1~ :> ~ l
~I

-:.:
I

"'1 I 0 / o : lc'2. I
' '2.0K

r;:~ '633-~u i.20°/oJ

f!,

I • V I
QI
Zf-l22'2'Z

::, zc.4-= I ._ __________ --=---I ""'::;_ ______ _J

TP\\

ii=

& '~

.,
~i-lM

4~

I V

'2.m--
V

+5\/ ~
+ IZY

lt.~1~?,

I</ v.rq.
X.'5400

- I:,. c.11v11'<' 1..1::-0

J-t.., =~
I I p-:::_ ____________________ ,,.__ ____ ...;l..~0::-~ - I-IE,b..'D LOl>.0

--u-u--;-----r--r----1---------t-t------t-:-1z=--_----t-------~.....-'4---U--OH.:::,__,~ctl.::'.:J '(I
,4~'=> I

"'"C.1"=:>-
11]35 ').!1~3'---+------~-----___::====-------------------------------

12

-t- RE-A.D E:-l-.lA.e>LE=
Xo400

"TP\'2 ~)'\~\ ------+----------+------+---------------------+-t>-----------------

_-~-------------+-..... --+--:l<lz: Q @ 9 l ~
--~~~=~-----------------t----~-c ___ I-i-------------10_3E_-_/:_~A_:~~~~~:::::~_.J -~q

+sv

+ oUp"LlT 1:-WAe.t..'=:-
7'~ 4-00

+isv

€,r-----e,

V

RZ"=>
161(.

CI 'l ,~..----"\JV' A•--+ s y
1.0

10°/o it I':.

12.21

~---~"•4.,,:1,,,f.,.......--+ 5V
c.ll_L •
.1,T

10°/ol<o 7

.L

l
-::

~~{~~-~ I 4D • 14

,--------+------+------------+-+-1--il '2. I~ I 1-.l ~ z 4F L--;.;;:....>,;~~ ¢D
..--r---_-_-_-_-_-_-:_1-_-_-_-_-_-_-.. -~:-+1-~-='3:_l:2D>'l----<.,___,3:c..,----... \ -+-SV 1, CRf4 'v

z 3B > 12~, IN<loo3

\\~

..---+--9-~ 5 - 4 > 2.10
S 2 .J 5 L QA IS 1o~J!----- 4D Ci: ~ j µ
9~!,>4' .--+-+-+--+-13-<o ::~-BIT:Bl-':~~-++-------,......;-------i-~''!>--il ~v 'Z ?,4r: c~15 ';' cpc.
~- "'sRE:G c-1 i.t4o •••A~
iii, .__4 A QD '2.10 1 l"'""'-'U'.:
~00 S ~ ,_ ,. R- cpe,

\I ~ ~ 3D QD = - - 4r: l-.i-
.__. ___ 7_.o R 4 R-4-1-+-StV s Cl<ll~ IIJ4003

r CRl3 Cl212 C.RI\ ,,

____ z_e: __ -_' __ ~---~-~ ___ +_s_v ________ -+~~-•"' ~ •~ ~ I P ,.~ <j,A

Ir.,,... Z ' - 4 ~ ."\ 3 IIJ4a:>~ 2"1~ 12. R
2

4
v .hl_3 B ~)--.....---------'-1 a.=Zyf=-I - ""\' ~C.K ~E 0

\-'3,<...._ ____ __;c.· _l C IG:> r
I¾ 5~/-G:,--------+----------~ I~ ~

I -:; S 0
/ 0

[L!J
I

+SY 2-14

Mini Disk Operation

Power Supply

r------------------------------,
I ~---.-----------{. ~~E 30155T :

120 VAC
60 HZ

I
GRN

CR6
IN4002

QI

7805
340T-05

+ Cl

~

R3
560

R2
IOK

12 V
AOJ

I
I
I
I

RI I
0 33/2W I

I

R4 I
2.2K I

I
R7 C5 I
IK ~I

I
R5 I 3.3K

Pl

~--'--~-~--j 2 12 V RE TURN

+ C4

~
~---<>--< 4 + 5 V

I L _______ _._ _____ _. ____ _. _______ ~~------1 3 5V RETURN
I .

=' L--------------------------------~
UNLESS _.QTHERWISE SPECIFIED·

t. ALL RESISTORS ARE 1/4 WATT, 5%,
RESISTOR VALUES IN OHMS, K•IOOO.

2.CAPACITOR VALUES IN MICROFARADS
ANO WORKING VOLTAGE

3. ~- INDICATES CLOCKWISE ROTATtON.

NC
CURRENT LIMIT

CURRENT SENSE
INV INPUT

NON- I NV l NPUT

V REF

Vee~

NC
FREQ.COMP

MC!723CP TOP VIEW

2-15

Mini Disk Operation

Making a TRSDOS BACKUP
Before you do anything else with your TRSDOS diskette, follow these
instructions for making a "safe copy" of your system software. That
way, if anything should happen to your original, you won't be "out
of business" while you wait to get another one.

Connect the Mini Disk system and power it up as described in the
Mini Disk Operation chapter. Be sure your TRSDOS diskette is in
Drive O when you turn on the CPU. (And just for safety, leave the
write protect tape on the TRSDOS diskette until you've duplicated
it.)

If you have more than one drives connected, place a blank diskette
in drive 1. If not, have the blank diskette handy - BACKUP will tell
you when to insert it into drive 0. Do not place a write protect tape
on the blank diskette.

After you power on the CPU, the display will read

Type:

TRS[>OS - DISK OPERATING S'T'STEM - VER 2. 1

DOS REAO'T'

The system will then display:

TRSOOS DISK BACKUP LITILIT'T' VER 2. 1

If you have only I drive connected, type:

SOURCE [>RIVE NUMBER ? fl IU04;•
[>ESTINRTION DRIVE NUMBER ? 1 IU•H;i

If you have two or more drives, type:

SOURCE DRIVE NUMBER ? EHU04;t
[iESTINATION DRIVE NUt1BER ? 1 IU•Hii

Now type in the date in MM/DD/YY form. For example, if it's
August 3, 1978, type:

TRSDOS will then start the BACKUP procedure. First it will format
the blank diskette, locking out any defective tracks; then it will
duplicate the contents of the TRSDOS diskette onto it.

2-16

Mini Disk Operation

If you are using only one drive, BACKUP will tell you when to insert
the destination (blank) diskette, and when to re-insert the source
(TRSDOS) diskette. During the BACKUP process, you will have to
swap the two diskettes several times.

When the process is completed, the message:

E:FICKUP COMPLETE - PF-:ESS Er-Hrn TO CONTINUE

will be displayed.

If TRSDOS instead displays the message:

BACKUP REJECTED DUE TO< ...)

then erase the diskette with a bulk eraser (Radio Shack Catalog
Number 44-210) and repeat the BACKUP procedure. Ir it still won't
work, you may need to try using another blank diskette.

IMPORTANT NOTICE
The BACKUP utility is provided solely for your personal use in
maintaining safe copies of your TRSDOS and data diskettes.
BACKUP automatically places copyrighted TRSDOS software
onto each destination disk. TRSDOS users may BACKUP the system
software solely for personal use.

See the Copyright Notice at the beginning of this Manual for more
details.

2-17

TRSDOS
An Overview

Contents of This Section

Introduction 2
Entering a Command . 5
File Specification . 6

Section 3 - Page 1

T
A

TRSDOS Overview

Introduction
TRSDOS, like the entire TRS-80 Microcomputer System, is designed
to satisfy a broad range of users, including:

• The novice to computers, who wants to start simply and learn
the details gradually

• The experienced programmer, who expects to write complex
programs, and may want to use some of the system routines
on a machine language level, to accomplish a variety of
sophisticated, customized applications

• The pure "user", who is only interested in using programs, not
writing them (for example, a clerk using an inventory program
on the office TRS-80).

What Is an Operating System?
By the time you finish this book, you'll have a pretty good idea ...
But for the time being, here's an overview.

An operating system is a master program that allows a complex
computer system, including various Input/Output (1/0) devices,
storage devices and programs, to interact efficiently and with
apparent simplicity. The operating system makes sure everything
that has to be done, gets done - and you don't even have to know
what it is that ''has to get done"!

Here's a rather arbitrary breakdown of what an operating system
does (see Glossary for unfamiliar terms):

• Interfaces the central processing unit (CPU) with the various
input/output and storage devices

• Accepts and interprets operator commands

• "Shepherds" your programs (and system utilities you request)
in and out of the execution sequence, by allocating CPU time,
J/0 channels, storage and other system resources

• Handles interrupts, and oversees the execution of both
foreground and background tasks

• Provides fundamental routines which would otherwise have to
be included in every program; this saves memory and pro
gramming time

3-2

TRSDOS Overview

You don't always have to be aware of the operating system to use it.
For example, when you're using DISK BASIC, you don't see
TRSDOS at all. But the system is still there, executing a program
called BASIC; BASIC, in turn, executes your own programs and
commands.

At other times, the operating system may be quite visible to you,
allowing you to enter system commands directly. This is the case
with TRSDOS and its "DOS READY" mode.

What Is TRSDOS?
The TRS-80 Disk Operating System (TRSDOS) is a comprehensive
set of system routines and file management utilities. Much of its
complexity (and power) relates to the fact that it is disk-based.

The system is loaded from diskette, and uses diskettes to store
internal bookkeeping information as well as data and programs you
create. TRSDOS uses completely dynamic disk space allocation,
so you can open and manipulate files freely without worrying where
they are physically located on the diskette. When a file fills the
space currently allocated to it, TRSDOS automatically finds and
acquires more space to accommodate additional data (assuming
space is available on the diskette).

(All information on a diskette - programs, data, and TRSDOS
itself - exists in the form of files. For more information on files,
sec the Glossary, Files Entry, and the Technical Information chapter.)

In addition to system routines which perform the functions
described above under "What is an Operating System?", TRSDOS
includes several file management utilities to let you manipulate and
modify existing files on the diskette: copy, append, rename, change
the protection status, etc.

3-3

TRSDOS Overview

How TRSDOS uses RAM

TRSDOS consists of:

• an executive program file
• auxiliary system-routine files
• a library-command file
• extended utility files (BACKUP and FORMAT)
• and the DISK BASIC file.

The executive program is loaded into RAM on power-up, and remains
there at all times while TRSDOS is running. For this reason it is
called the "resident" TRSDOS program. It includes certain system
routines, tables, pointers, and Input/Output drivers.

The auxiliary system files contain routines and commands which
are loaded as needed to execute your commands and programs.
These routines load into an "overlay" area of memory. When
TRSDOS has executed the routine, another one may be loaded in
the same area, or "overlayed". The use of overlays means that
execution of system routines will not affect your memory area
(addresses above 51 FF hex).

The library command file contains the routines for executing most
of the operator commands. These routines load into memory
addresses from 5200 to 6FFF. Therefore your machine language
programs should generally be located above 6FFF. That way they
won't be affected by execution of the library commands.

The TRSDOS extended utility programs are loaded when you type in
their file names, BACKUP and FORMAT. These programs can use
all available memory - even the resident TRSDOS program is wiped
out when they are loaded.

DISK BASIC is a set of enhancements to LEVEL II BASIC. When
you type in its file name, BASIC, it will load into memory beginning
at 5200, and begin execution.

3-4

TRSDOS Overview

Entering a Command

Whenever the prompt,

DOS REfi()'l'

is displayed, you may enter an operator command. In its simplest
form, an operator command is just a single word - a system or library
command, the name of an extended utility program, or the name of a
user command program. All these categories will be detailed later.

As an example,

DIR '*ii*•
tells TRSDOS to display the user file directory for drive 0.

In general, operator commands will require more than one word;
for example, to kill (delete) a certain file, you have to specify the
file name.

KILL XYZ '*ii*•
tells TRSDOS to find the file named XYZ, eliminate it from the
directory of the diskette which contains it, and release the space
occupied by that file.

In general, an operator command consists of a command followed by
one or more file specifications, followed by special para_meters:

command [\ryfilespec] [\ry(param)] l\&TOl [\ryfilespec] [\ry(param)]

where jllespec is a valid TRSDOS file specification (more below)
param is a parameter which details how the command affects the
specified file(s).

If this command format seems complex, don't worry; that's because
it's so generalized. The actual commands can be quite simple, as
you'll see from the examples given with each command.

Whenever you finish typing in a command, press •~~U*I
TRSDOS will then process the command as follows:

I) Check to see if it's a system or library command; if so, execute
it immediately ... otherwise

2) Check to see if it's the name of a utility program; if so, execute
it via the extended utility package ... otherwise

3) Examine the diskette directory on each drive to see if the
command is listed as a user command file; if so, load and
execute the file.

3-5

TRSDOS Overview

File Specification
A file specification (filespec) is the way you reference a particular file,
whether you're operating under TRSDOS, DISK BASIC, or any other
command program (e.g., TAPEDISK).

Disk file specifications have the foliowing format:

name [/ext] [.pw] [:d]

where

name is the file name, consisting of from 1 to 8 alphanumeric
characters, the first of which must be alphabetic

ext is an optional extension of the name, consisting of from
1 to 3 alphanumeric characters, the first of which must be
alphabetic. The extension, if used, must be preceded by a
slash symbol.

pw is an optional password, consisting of from 1 to 8 alpha
numeric characters, the first of which must be alphabetic. The
password, if used, must be preceded by a period symbol.

:dis an optional drive specification, with d equal to 0, 1,2 or 3,
depending on which drive you wish to specify. The drive
specification, if used, must be preceded by a colon.

Do not embed blanks in a file specification. If you do, TRSDOS
will terminate the filespec at the first blank; if the truncated filespec
is valid, you won't receive an error message.

Valid file names:

A
GAMES/BAS
PAYROLL/BAS.SESAME
DRIVECHK:1
AUG1578

INVNTORY
SORTER/VRl
SECRETS.MYNAME
DRIVECHK:2
TAXES/TXT.TEAPARTY: 1

DATAl 1
SORTER/VR2
POETRY/TXT:1
AUG3078/DAT .JQD
CHKWRITR/BAS .VERSION2

To take a completely "filled out" filespec,
TAXES/TXT.TEAPARTY: 1 refers to a file named TAXES, with
an extender TXT, and a password TEAPARTY. This file is
referenced to drive 1. If you are creating a file under that filespec,
it will be placed on drive 1. If you are reading or writing to the
file specified, TRSDOS will reference drive 1 for the file.

3-6

TRSDOS Overview

What makes a particular ftlespec unique?

The name, extension and drivespec all figure into the uniqueness
of a particular filespec. The password does not.

For example, the following filespecs refer to distinct files:

A
DRIVECHK:0

A/BAS
DRIVECHK: l

A/CMD
DRIVECHK:2 DRIVECHK:3

However, the following filespecs cannot be used to reference
distinct files:

RECEIPTS RECEIPTS.AUG3078 RECEIPTS.AUG3 l 78

(There are cases where two different passwords are used to access
the same file; see TRSDOS Library Commands, ATTRIB.)

More on Extensions

The particular extension you use can be purely arbitrary and
personalized. Used this way, extensions give you an extra three
characters to work with in creating a suitable file name.

Examples:

PAYROLL/AUG PAYROLL/SEP PAYROLL/OCT

However, extensions become more meaningful when they are used
as type specifiers, using some convention. Here's a recommended
set of extensions:

/BAS

/TXT

/CMD

/CIM

/REL

/SYS

/OVn

/DVR

BASIC program file stored in compressed format

ASCII text: BASIC program saved in ASCII form, or
source file, etc.

machine language command file

core (RAM) image file, not necessarily executable

relocatable machine language program file

system program - files which are part of TRSDOS. Don't
use for your files.

overlay number n

1/0 driver module

3-7

TRSDOS Overview

One advantage of this usage is that anyone looking at a directory
listing of a diskette will know what kinds of programs he's
looking at.

Another advantage is that TRSDOS is equipped to recognize
certain extensions. For example, if a file has the extension /CMD,
then TRSDOS will load and attempt to execute that file when
you type:

filename Ij~1•:j;1
omitting the extension /CMD.
That's why you can execute the file BASIC/CMD by typing

BASIC •UO@
Similarly, your own programs can be written to recognize
extensions.

More on Drive Specifications

If you give a drive specification, TRSDOS will use the specified
drive in executing the command. If you omit a drivespec,
TRSDOS will search through the directories of all drives in use,
starting with drive 0; the first drive with the correct name/
extension will be used. However, if the command requires a file
creation, TRSDOS will skip over to the first non write-protected
diskette.

For example, suppose four files named DRIVECHK are contained
on drives 0 through 3. Then every reference to DRIVECHK (no
drivespec) would go to drive 0. The filespecs DRIVECHK:0,
DRIVECHK: 1, DRIVECHK:2, DRIVECHK:3, would allow each
of the four files to be accessed.

More on Passwords

The password is assigned when the file is created, and may be
changed via the A TT RIB or PROT commands. Files with
passwords can only be accessed by reference to the password, or
to the diskette's Master Password. So if you assign a password to
a file, don't forget it!

It's important to realize that every file has a password, even if you
do not specify it explicitly when the file is created. In such cases,
a field of 8 blanks becomes the password.

3-8

For example, if SAMPLE (a file with no explicit password) exists
and you attempt to create a new file, SAMPLE.WATERBOY,
TRSDOS will give you a FILE ACCESS DENIED message, since
in effect you're trying to access an existing file with the wrong
password. The correct password is a string of 8 blanks - which
you can omit from the file specification, since 8-blanks is the
default password.

TRSDOS Overview

3-9

TRSDOS
Commands

Contents of This Section

T
R s
D
0
s

System Commands . 2
BASIC2 2 TRACE 10
DEBUG 3

Library Commands . 11
AUTO 11 FREE 19
ATTRIB 12 LIB 19
CLOCK 14 LIST 20
COPY 15 LOAD 20
DATE 15 PRINT 21
DEVICE 16 PROT 21
DIR 16 RENAME 22
DUMP 18 TIME 23
KILL 19 VERIFY 24

Section 4 - Page 1

TRSDOS Commands

System Commands
These three commands (BASIC2, DEBUG, TRACE) leave user
RAM (hex address 5200-End) "untouched". The necessary code
for these commands loads into the overlay area between the
resident program and hex 5200. The other commands, referred to
as library commands, use addresses between hex 5200-6FFF.
So locate your machine-language routines above hex 7000 to protect
them from the utility commands.

BASIC2 (jump to LEVEL II BASIC)

I BASIC2

This command has no arguments or parameters. It simply transfers
control to LEVEL II BASIC. Once it has been executed, TRSDOS
is no longer resident in RAM. Your TRS-80 will then function as
a LEVEL II machine.

You may want to do this to gain memory for programs which
don't require disk capabilities. Another possible application
would be to LOAD a machine language routine from disk into
high memory, and then jump to LEVEL II BASIC via BASIC2,
so you can access the routine from LEVEL II, via a USR function.

Example:

r , 11A$1C2 muo;i

MENORY SIZE'-;, •*ii*•
RADIO SHACK LEVEL 11 BASIC

)_

To re-load TRSDOS, press the Reset button or type

4-2

TRSDOS Commands

DEBUG (real-time debugging program)

DEBUG[l(,(param)]

where param = ON or OFF, and ON is the default.

DEBUG is a real-time debugging package for use with machine
language programs, including both foreground tasks and back
ground programs. (See Glossary.) DEBUG lets you examine and
alter the contents of the Z-80 registers and RAM locations;
jump to specified addresses and begin execution with optional
breakpoints; step through programs one instruction (or one
CALL) at a time, and more.

All address and byte values in this DEBUG section are given in
hexadecimal form - which is the form required by DEBUG.

DEBUG loads into the overlay area; addresses above 51 FF are
unaffected.

Type:
DEBUG 1*u4i1

to enable the debugging facility. Normal TRSDOS command
interpretation continues; but the debug program is now set to
load and execute under any of the following conditions:

1. When the BREAK key is pressed.

2. After a program is loaded and before its first instruction
is executed.

3. Upon detection of a disk-related error.

Note: TRSDOS system routines and execute-only user routines
cannot be fully debugged: you can use DEBUG to examine/alter
register and RAM contents, but not to single-step, jump, etc., when
these protected programs are the "targets" for DEBUG. Furthermore,
since DEBUG loads into the overlay area of RAM, you can't use it
with other overlay programs and routines.

DEBUG offers two display formats:

register display with indirect RAM
plus any 64-byte "page" of RAM;

full screen, 256-byte page of RAM.

4-3

TRSDOS Commands

In the register display format, DEBUG displays all the Z-80 registers,
organized for interpretation either as two 8-bit registers or as 16-bit
register pairs. Since most programs use several sets of register pairs
as indirect pointers or indexing registers, 16 bytes of indirect data
are presented with each register pair. Each of the flag registers is
shown with an ASCII representation of its flag bits.

An additional 64 bytes of memory are displayed in four lines at the
bottom of the display.

Here's a typical DEBUG display sequence. Note that the values in
your display will typically vary from these.

4-4

rBI•~:: l:l~ll=i;I
DOS READ'l'
1=);1#43

RF = J:E .-,r, .:::.,:, --1-1---
BC = 13A J:E :::) 09 BA
DE = 01 134 => 1A 4()
HL = (10 ~54 =) (11 01
RF .. ·= FF FF SZ1H1PNC
BC·'= 4[! BE =) 51 51
C.•E···= 01 07 -•M·•• 4() 4F -.,
HL,..= 4[) 00 = .. > F2 51
I~< = 40 15 =} (11 E3:
I 'r' = FF FF - '· -M•• FF in~
SP = 41 E8 =}

., .. , --·~ 04
PC = 00 613 =) 0B 78

101(1 =} .-,c, ~·-· 1(1
102(1 ::::;)• 21:1 (C:

11:.C:0 =) C0 2B
1041:1 _.,

-_/ [)E 01)

c--.,
·'-

45
58

C[)
c---, ._1.;:.

06
0]
AF
[)[)

Bl
FE
28
70
17

60 09 7[) 93 C? -~ 60 (IQ -· C:9
4[) 4F c-r,

··'"- 59 20 53: 49 5A
1E: 0A 1A 08 18 09 19 213

FC 51 7E 2i: 1·-· ,:, EC 132 1::12
59 20 "'? 49 5A 45 01::1 ., .. ,

·-'-· -..J.::..

10 C[) 65 51 :rn 5[) 40 FE
1)0 00 (1(1 48 49 1)7 t:'t"', ._11:, 04
(3: 74 06 C1 00 40 C3 0(1
(G 1~5 40 15 4(1 1·-· ,:, 4•,. ,;:. :,:F
20 FE: C9 J:1 (10 06 J:R EC
44 ,-,r,

.::•:• 0C FE J:O 28 F0 FE
1:E, J:(1 78 E6 ifl •')1j

.:..'-' €1:J: 28

C9 -... -. ...:: . ..::, [)::~ 4(1 21 J:(1 41 36
57 14 C[) 01 12 131 l;°jl:1 03:

21
45
20

1::10
41
41
::::i
4(1
J:F
37
2C
36
20
... , .• }
.:,.::..

27 41 C() [:,1

(10 t·•· ._,.::, 41 44
08 78 81 20

4E 02: --:,.-,
..::-~ E7

44 49 4F 2(1
2(1 B C[) F2
3:E 2(1 44 4F
E1 E9 C 9F
4C 013 E"'· .::. i::1'5
J:C FE (12 t,·::,

28 EC FE 2E
24 7B E6 04
C:9 FE 05 E5
FA c--

._1{ 10 14_

TRSDOS Commands

In this display, register B contains the hex value OA, and register C
contains 3E. Taking the BC register pair as a pointer, it points to
address OA3E. Therefore, the contents of memory locations OA3E
through OA4D are shown to the right of the BC= OA3E =>marker.
In this case, address OA3E contains 09, OA3F contains BA, etc.

The flag registers F and F' are handled differently. For these
registers, the hex contents of the flag register is displayed, along with
a bit-by-bit alphabetic code which makes it easier to interpret the
flag status. For example, bit 7 (leftmost bit) is the sign bit, so the
alphabetic code shows an S in that position whenever this bit is "set".
Here's a complete table of codes for all the flag bits:

bit status if set if not set

7 Sign s
6 Zero z
5 unused 1
4 Half-carry H
3 unused 1
2 Parity /overflow p

1 Negative N
0 Carry C

In the above display, none of the F flag bits are set (discounting the
unused bits 5 and 3), and all of the F' flag bits are set.

Notice the four additional lines below the PC register display. Each
line shows the contents of 16 bytes, starting at the address to the left
of the arrow; the four lines always show a total of 64 bytes of
contiguous memory i.e., locations with sequential addresses. The
starting point in this four-line display is either 0000 or the last
command you specified with the D command (more later.)

The blank area in the lower left of the Display is where commands
you enter will be displayed.

4-5

TRSDOS Commands

DEBUG Commands

Note that some commands are executed as soon as you press the
specified command key; other commands are executed only when
you hit <SPACE> or f*114i1 , as indicated below.

Entry
Command Required Operation Performed

A none Shows the ASCII or graphics
character corresponding to each
value displayed. Shows a period
when the value is not displayable
as an ASCII or graphics character.

C none Single-steps next instruction, with
CALLS executed in full. (Next
instruction is defined by PC
register.) Target program cannot
be a system or execute-only file.

Daaaa <SPACE> Sets memory display starting
address to aaaa. In full screen
mode, sets starting address so
aaaa is contained in display.

Gaaaa [,bbbb [,cccc]) 1j~11:j;1 Place aaaa in PC register and
executes with optional
breakpoints at bbbb and cccc.

H none Displays all memory and register
values in hexadecimal form.

I none Single-steps next instruction
(defined by PC register). Target
program must not be read
protected.

M[aaaa] <SPACE> Sets the current modification
address to aaaa. The modification
dialog will then be displayed in
the lower left of the screen. If
aaaa is omitted, the last modifica
tion address will be used for aaaa.
If aaaa is currently in the display,
its contents will be surrounded
by a pair of vertical bars.

4-6

TRSDOS Commands

Command

Rrpl/>dddd

s

u

X

Entry
Required Operation Performed

<SPACE> Loads register pair rp with the
value dddd.

none

none

none

rp may be any register pair: AF,
BC, AF', BC', IX, IY, PC, etc.

Sets display to full screen
memory mode, showing 256
contiguous bytes. Press X to
return to register display format.

Dynamic display update mode:
lets you observe the execution
of a foreground task. Hold down
any key for a couple of seconds
to exit this mode.

Sets display to register format;
also cancels any command you
are in the process of entering,
except R-command.

none Increments memory display by
one page (in register display
mode, page= 64 bytes; page=
256 bytes in full screen mode).

none Decrements memory addresses
displayed by one page.

Note: You cannot use the backspace key (~)to delete mistakes
made while entering commands. Instead, just hit the X key to
cancel the command. Or, if you made the error while typing an
address or value, just type the correct address immediately after
the incorrect address. DEBUG will only look at the last four
digits entered.

For example,

D474080 <SPACE>
tells DEBUG to display the page of memory containing address 4080.

4-7

TRSDOS Commands

More on the M-command (modify memory)

Any time you wish to alter the contents of a memory location, type
Maaaa and press the <SPACE>. This sets the memory modification
address to aaaa and puts a memory modification prompt in the lower
left corner of the Display. For example, typing
M7F00 <SPACE >
produces:

7H1(1 => 120,I fn3 1)(1 0(1 00 0(1 92 82 20 EG EG E:1 EG EC BJ: E:3:
7FC1(1_ 7F1(1 => E:J: EC EC EG 83: EC EG E:J: E:B BJ: BB 83: BB E:3: 88 BB
20-_ 7F2t) => FB BB BB BB BB FB FB BB 1-:.n:.1 FB FB FB FB FB FB FB

7F30 => 00 FB FF FB FF FB FF FF 00 FF FF FF FF FF FF FF_

Note the vertical bars around the value of 7FOO; These will appear
wherever the modification address appears on the screen.

To modify the contents of 7FOO, type the new, two-digit contents
and press <SPACE>. The display will then be updated, and
DEBUG will increment the modification address by one.

To leave an address contents unchanged, simply press <SPACE>
without first entering a new contents. This will increment the
modification address and leave the previous address unchanged.

To exit the modify memory mode, type X or l*Uj;I .

If you simply type:

M < SPACE>

DEBUG wiII default to the last specified modification address, if any;
otherwise 0000 will be used.

Frequently, two values on the display will be highlighted by vertical
bars ~ one in the 64-byte memory display area, and another in the
indirect memory area associated with the register pairs.

This is because the contents of the modification address happens to
be displayed twice, one directly, one indirectly.

4-8

TRSDOS Commands

More on the G-command

To return to TRSDOS from DEBUG without re-initializing, type

G402D •M•H;•
DEBUG will then be re-entered under any of the three conditions
noted above.

To disable DEBUG after using this exit, type

DEBUG <OFF) l*U=l;I
DIR •M•H;•
To begin execution at the address in the PC register (while you're
in the DEBUG mode), type

G •*il=i;•
To reinitialize TRSDOS, type

G0000 1:l~ji=i;J

More on the U-command (update display)

In the Update mode, only foreground tasks are executed. So to see
anything happening, you need to look at registers or memory
locations used by a foreground task.

The real-time clock makes a good example.

Type:

D4040 <SPACE>

to display the values 4040 through 4046. These addresses store the
time and date, as follows:

address

4040
4041
4042
4043
4044
4045
4046

contents

25mS real-time scheduling counter
seconds
minutes
hours
year
day
month

Now hit U and you'll see the values updated by the clock foreground
task.

4-9

TRSDOS Commands

Other applications for DEBUG

DEBUG can be accessed via DISK BASIC, to help you locate stack
pointers, table addresses, etc. See DISK BASIC.

DEBUG is also a handy way to create short object code programs,
which can then be DUMPed onto diskette.

To disable DEBUG

As long as DEBUG is in the overlay area, TRSDOS may enter the
debugging program unexpectedly, for example, upon an error. If
you don't want this to happen, disable DEBUG by typing:

G402t> f*u4i1 (to return to TRSDOS)

DEBUG (OFF) l*U::1;1
DIR l:l~il@;I

TRACE (dynamic display of PC register)

TRACE [\6(param)]

where param = ON or OFF; ON is the default.

The TRACE command enables a foreground task which displays the
contents of the user's program instruction counter (PC register) in
the upper right of the Video Display. The 4-digit hexadecimal value
will be updated every eight milliseconds with the current background
program's execution address. For example:

TRACE i4~114i1
Since it is a foreground task, TRACE operates at all times - in DOS
READY mode, DISK BASIC, or any other program. To temporarily
disable TRACE, disable all interrupts (CMD"T" in DISK BASIC).
When interrupts are re-enabled CMD"R" in DISK BASIC, TRACE
will start up again.

Used with the DEBUG program, TRACE can be invaluable in
debugging machine-language programs. It won't be of much use
during BASIC program execution, though. To permanently stop
TRACE, execute the command:

TRACE (OFF) •U•Hii

4-10

TRSDOS Commands

Library Commands
These commands are overlayed into the RAM area hex 5200-6FFF.
They are loaded as requested in blocks; so, for example, DATE and
TIME are both loaded when either is requested. TRSDOS will not
waste time loading a command if the code is already in RAM.

AUTO (automatic key-in on power-up)

AUTO [l/>dos-command]

where dos-command is a filespec for an operator command
or an executable command file.

Note: To use AUTO, you must remove the write-protect tab from the
system diskette.

The AUTO command lets you modify the power-up sequence, by
specifying a command to be executed immediately after power-up.

Typing:

AUTO dos-command •M•H;•
causes TRSDOS to write dos-command as an "automatic key-in"
on the drive O diskette, replacing any previous automatic key-ins.
From that point on, every time you power up using that TRSDOS
diskette, dos-command will be keyed in automatically whenever
TRSDOS is initialized. An automatic key-in takes the place of
keyboard input.

To restore the power-up sequence to normal, type:

AUTO •=1¢il*•
This will eliminate any automatic key-ins.

Examples:

AUTO CLOCK on subsequent power-ups, the display clock
command will automatically load and execute.

AUTO BASIC on subsequent power-ups, TRSDOS will load
DISK BASIC and begin the initialization dialog.

NOTE: You can override any au tom a tic key-in by holding down the
HaH;• key during power-up. This may be your only way of
regaining control of the system, for example, if dos-command is not
a working command program.

4-11

TRSDOS Commands

ATTRIB (set protection attributes)

ATTRlBV>filespecV>(param[,param .. .])

param

where param can be any of the following:

meaning

ACC=pswl

UPD=psw2

PROT=/cve/

make file invisible to normal Directory command

assign psw 1 as the new access password

assign psw2 as the new update password

assign level as the new access protection level:
(KILL, RENAME, WRITE, READ, EXEC)

The filespec must exist on one of the connected drives.

This command lets you alter the protection status of a file, by
changing passwords and/or the degree of access granted by a
password. (See TRSDOS Overview, "File Specifications" section.)

Specifying the I parameter gives the file the invisible attribute. To
display Invisible files in the Directory, you have to specify the
l parameter in the DlR command. There is no way to remove the
I attribute, short of copying the file to a new file which does not
have the I attribute.

Example:

FI LE [> I RECTORV

CHESS/CM[l P

DOS REFID't'

l>l~ .. :#, n> •il~iiil;i

4-12

DRIVE 1

11ENU/TXT

MANUAL -- 09/01/78

TEST/BAS P

TRSDOS Commands

FILE C>IF.:ECTOR'T' DRIVE 1 MANUAL -- €19/01/78

CHESS/CM[, P VI [)SCAN/CMD I MENU/TXT
TEST/BAS P

()05 RER[N

All files are protected with two passwords, an access and an
update password. Access and update passwords may be identical,
and they may consist of all blanks. Use of the update password
grants total privilege to a file - you can kill, rename, write, etc.
Use of the access password, on the other hand, grants a limited
privilege, as specified by a PROT parameter in the ATTRIB
command.

The protection levels form a hierarchy, and each level implies
access to all lower levels.

level

KILL

RENAME

WRITE

READ

EXEC

privilege

total privilege

rename, write, read, execute

write, read, execute

read, execute

execute only

When you create a file, the password you specify becomes both
the access and the update password. (If you don't specify a
password, a string of 8 blanks is assigned as a default password
for both access and update.)

4-13

TRSDOS Commands

Once you have created the file, you can use ATTRIB to assign
different values to the access and update passwords. Having
two different passwords can be very useful in business applications.

For example, suppose you have a data file, PAYROLL, and you
want an employee to use the file in preparing paychecks. Assume
the file was created with default (blank) passwords.

Then:

RTTRIB PA'l'ROL.L (ACC=EMPLO'r'EE, UPD=l'lRHAGER, PROT=RERD)

would allow the EMPLOYEE to read the file, while only
MANAGER could alter it.

To delete a password (set it to blanks), omit the password after
the equals sign in the password specification. For example,

RTTR 18 PF!'r'ROLL. 11RHRGER (ACC=)

sets the access password to blanks, and leaves the update password
unchanged.

Note: To access a file from DISK BASIC requires a privilege of
READ or higher.

CLOCK (display real-time clock)

I CLOCK f lp(param) I

L where param=ON or OFF; if no param is specified,
ON is assumed.

Typing:

CLOCK •*11#;1
causes the internal real-time clock to be forcibly displayed on the
top line of the Video Display (PRINT positions 53-60). Any
characters present at those locations will be overwritten.

The clock display is updated once a second via a "foreground task".
In other words, as lung as the interrupts are enabled, TRSDOS
will periodically interrupt whatever "background program" is
executing (DISK BASIC, TAPEDISK, etc.), and update the clock
display.

TRSDOS powers-up in a CLOCK OFF condition.

4-14

TRSDOS Commands

To stop the display-clock function, execute the command:

CLOCK (OFF) •*ii=iii

See TIME command for information on the real-time clock.

COPY (make a duplicate file)

[~'OPYUilespecl lpTO'rpfilespec2

Creates a duplicate offilespecl under the new namefilespec2. If
filespec2 already exists, its previous contents are lost. The first
file (jilespecl) is unchanged by this command.

You must have at least two disk drives to copy a file from one
diskette to another.

Examples:

COPlr' PRGE7 ITXT: 0 TO PAGE? /TXT : 1
duplicates PAGE7 /TXT on drive 0 onto drive 1, using the same
name/ ex tension.

COP'r' OLDFILEIBRS. PDQ TO DERDFILE
duplicates OLDFILE under the name DEADFlLE. Note that
OLDFILE is protected by a password, while DEADFlLE is not.
DEADFILE will be created on the first non write-protected
drive in the sequence 0-3.

DATE (set date)
DATE'rpmm/dd/yy

where mm is a 2-digit month specification, mm=0 1 to 12
dd is a 2-digit day specification, dd=0 1 to 31
yy is a 2-digit year specification, yy=00 to 99

For example, if it's August 3, 1978, type:

DATE 08103:/78 nm•=ii•
This command resets the real-time date. At power-on, the date
is set to 00/00/00. The date is updated each time the clock
cycles through a 24-hour period: The real-time clock calendar
includes the logic to account for 28, 29, 30 and 31-day months.

4-15

TRSDOS Commands

DEVICE

I DEVICE

This command has no arguments or parameters. It simply lists all
currently defined 1/0 devices: KI=keyboard, DO=video display,
PR=line printer.

()EVICE ld~O*i

DIR (display directory)
Example:

DIR[Vi:d] [Vl(param[,param .. .])]

param

s
1
A

where :d = a drive specification, d=O, 1,2 or 3, and
0 is the default
param = any or the following:

meaning

display all System and non-Invisible files
display all Invisible and non-System files
display disk space allocation for all files displayed

This command reads and displays the file directory of a specified or
assumed drive. If no parameters are specified, only non-Invisible user
files will be displayed.

Disk space allocation is indicated as follows: LRL (logical record
length), EOF (end of file, i.e., highest record number used), and
SIZE (measured in G RANules, where 1 granule= one-half track,
or 1.25K bytes).

Examples:

DIR •UOHi•
displays all user files on drive 0. A typical output for this command
might be:

4-16

FI LE DI RECTOR'-T'

VIC>SCAN2/CMD
TBUG/CM[l
LISTER/BAS
DISKDUMP/BAS

DOS F.:EflD'r'

DRIVE 0 TRSDOS -- 10/03/78

CLKAXESS/BAS
EDTASt1/Ct1D
TAPEDISK/Ct1D
GLOSSACC/BAS

SELECTRC/DVR
GLOSSAR't' /BAS
KBFIX/CIM
VI [>SCAN/Ct1D

TRSDOS Commands

DIR : 1 (I., S) i*ii4ii

displays all files, including System and Invisible files. A typical
output for this command might be:

FILE DIRECTOR't' [WIVE 1 MANUAL -- 09/01/?E:

BOOT/SYS SIP
MENU/TXT

[, I R/S'r'S SIP
TEST/BAS P

CHESS/CMD P

DOS READ't'

Note the P beside some fiks. This indicates they have non-blank
passwords.

DIR (A) j*u:j;I
gives the disk space allocation on drive 0, user files only. Typically:

FILE [l I RECTOR't' DF.:IVE 0 TRS[,OS -- 11/18/78

EC>TASM/Ct1D LRL= 256 / EOF= 27 (
.• SIZE=

RSM/CMD LRL= 2~56 / EOF= 18 / SIZE=
VHMTBUG/CM[i LRL= 256 / EOF= 0 / SIZE=
SEGICHECK/TXT Lf.:L= 256 / EOF= 2 / SIZE=
TBUG/CMD Ll<:L= 25E, / EOF= C" ~· i' ... SIZE=
TAPE() I SK/CMC> LRL= 256 / EOF= r,

.::. / SIZE=
CPRINT/BAS LRL= 256 / EOF= 1 / SIZE=
Ht1F5t1/CMD LRL= 256 EOF= 1E: l' SIZE=

[,OS REACN

If a Directory listing cannot fit on the screen, only the first I 2 lines
will be displayed. Press any key to sec the remainder of the listing,
in increments of 16 lines.

6
4
.-,
<-

1
r,
.::.

1
1
4

GRAHS
CiRAHS
GRAHS
GRAHS
GRAN'.::
GRANS
GRAHS
GRANS

4-17

TRSDOS Commands

DUMP (dump memory to disk)

DUMPU,ji!especU,(ST ART=X'aaaa' ,END=X'hhbh'l ,TRA=X' cccc'])

where aaaa, bbbb, cccc are 4-digit hexadecimal addresses

aaaa = starting point in RAM of the machine
language program or data block to he
dumped to disk; aaaa must be greater than
6FFF.

bbbh =ending point in RAM of the block; bbbb
must be no smaller than aaaa

cccc = transfer address; when TRSDOS attempts to
execute the file, it will start at cccc. If cccc
is omitted, 402D will be used. This is the
address of the normal re-entry into
TRSDOS (i.e., re-entry with DOS READY
displayed; no re-initialization).

Iffilespec already exists, its previous contents will be lost.

If fUespec does not include an extension, TRSDOS will automatically
assign the extension CIM (core image) to the file.

Once you have dumped a machine language program onto disk, there
are two ways to execute it.

1) Simply type filespec IUO#i• TRSDOS will load the
file and hegin execution at the transfer address.

2) Type DEBUG l*Hli• and then filespec 1=1¢0:jj;i
After TRSDOS loads the file, it will enter tl1e DEBUG
package. PC will contain the transfer address. You can
then single step the program (I command), call-step
(C command), or execute it in full by typing:
G @~il:1;1

Note: A file with the extension /CMD can be loaded and executed
simply by typing the file name, without the extension, and
pressing •*04ii . TRSDOS will supply /CMD as a default
extension.

Examples:

4-18

[>1Jt1P GRAPHICS (START=1~·'7000'., EN[>=X'70A0 ✓, TRA=X--'7000·')

DUMP DATA/CIM: 1 (START=X'8000 ✓, END=X'8050 ✓)

TRSDOS Commands

KILL (delete a file)

[KILLl,filespec

This command deletes the specified file and frees the space for use
by the system.

If no drivespec is included in the filespec, TRSDOS will search for
the first drive which contains filespec, and attempt to delete that
file. If the diskette is write-protected, TRSDOS cannot KILL the
file.

Example:

KILL OLDFILEIBAS. PASSWOR[)

FREE (display free space on all drives)

I FREE

This command has no arguments or parameters. It displays the
amount of free space remaining on all drives in use, in terms of files
available and unused granules. (Each diskette can contain up to
48 user files; data diskettes have 67 granules available for user files;
TRSDOS diskettes, 44 granules.)

For example:

DRIVE 0 -- TRSDOS
DRIVE 1 -- TRSDOS

DOS READY

10121/78
10/03/78

LIB (display library commands)

LIB

37 FILES,
33 FILES,

Requires no arguments or parameters. This command displays all
TRSDOS system library commands available. These are the
commands which load between hexadecimal 5200 and 6FFF.

For example:

L 1B 14~11#;1

25 GRANS
27 GRANS

4-19

TRSDOS Commands

LIST (list text file contents to display)

[LISTV:,filespec

Reads the specified file and lists its contents on the Video Display.
Because LIST gives an ASCII representation of the data in the file,
filespec should refer to a text file. If you LIST a non-text file, the
display will be filled with a meaningless sequence of ASCII and
graphics characters.

Text files include:

• BASIC programs saved with the A option

• data files created by BASIC sequential write (PRINT#n)
statements

• assembly language source code; etc.

To temporarily freeze the Display during LIST execution, hold down
the SHIFT and@ keys until the listing pauses; press any key to resume
execution. TRSDOS will only accept such a pause after listing a
complete physical record ~ that's why you need to hold down the
SHIFT @ keys until TRSDOS "notices" your pause command.

Example:

LI ST PROG1/TXT

LOAD (load machine language file)

I LOADV:,filespec

Loads the specified file into RAM and returns control to TRSDOS.
The file specified must contain Z-80 object code, and normally
would have been created by a DUMP or TAPEDISK command.

LOAD is useful for loading several programs into memory, so that
all of them can then be called by a master program, which may be
another machine language routine or a BASIC program. (Of course,
all the different files must load into non-overlapping areas of RAM.)

To load subsidiary object code programs and then execute them
via a master object code program, LOAD each of the subsidiary
programs, then type the master filename and press •*ii=iii .

4-20

Examples:

LOAD GRAPHICS
LOAD [)ATA/C IM : i

TRSDOS Commands

PRINT (list text file to line printer)

I PRINT1¢,filespec

Works just like LIST, only the output is sent to the line printer. The
file should be in text (ASCII) form.

Examples:

PRINT SEQCHEK/TXT
PRINT PRGE?/TXT:0

PROT (use diskette's master password)

PROT[V,:d] [V,(param[,param .. .])]

where :d = a drivespec, d=0, 1,2,3; if no drivespec is
given the first drive is used

param can be any of the following:

param

PW
UNLOCK
LOCK

meaning

change Master Password
remove passwords from all user files
assign the master password to all user files

LOCK and UNLOCK are mutually exclusive; use only one.

This command changes the protection status of all non-System files
on the specified drive. To use it, you need to know the diskette's
Master Password, which is assigned during FORMAT or BACKUP.
The diskette you reference must not be write-protected.

Note: Your TRSDOS diskette has the password, PASSWORD.

To change the Master Password, specify PW as a parameter. To
remove passwords from all user files, specify UNLOCK. To place
the diskette's Master Password on all user files, specify LOCK.
(The Master Password then becomes the update and access password
for those files.)

Examples:

PROT :1 (UNLOCK) 14~114;1
After you enter this command, TRSDOS asks for the Master Pass
word for the drive 1 diskette. If you enter the password correctly,
TRSDOS will remove all user assigned passwords from files on
that diskette.

4-21

TRSDOS Commands

PROT (PW,LOCK)

After you specify the Master Password correctly, TRSDOS will
prompt you to enter a new Master Password. This new password
will be assigned to all user files, since the command included the
LOCK option.

A typical display sequence using the PROT command:

DOS REAC>'r'
ftl:f:.otUII~ •~~•i4d
t1ASTER PASSWOR[) ?

()05 READY
:D:IR/· l=i~lli;I

FILE DIRECTOR'r' --- [)RIVE 0 TRS[)O5

EC>TASM/CM[> P RSM/CMD F'
VHMTBUG/CMD P SEQCHECfVTXT P
TAPEDISK/CMD P HMRSM/CMD P
DOS READY

-- 10/21/78

VI [>SCAN/CM[) P
TBUG/CMD F'

Note that all user files are now protected with the Master Password.

RENAME
RENAME~filenamel [/ext]] [.psw] [:d] ~TO~fzlename2[/ext2]

where filename], filename2 are TRSDOS file names,
ext 1, ext 2 are ex tensions
:d is a drivespec (d=O, 1,2,3)
psw is a password

This command changes a file's name from the first name/extension
to the second name/extension. Note that the second name/extension
should not include a password or a drivespec. The first file's
specification may include a password and drivespec, as required to
identify a desired file.

RENAME cannot be used to change a file's protection attributes
or to move it to another drive. The previous passwords, protection
level, and Directory attributes (Invisible for non-Invisible) will be
assigned to the renamed file, and the file will remain on the same
diskette.
RENAME also checks to see that the intended new name does not
duplicate a filename currently on the same diskette. If it does, the
command is cancelled and an error message is displayed.

4-22

TRSDOS Commands

Examples:

RENAME t1ATHPAK TO MATHPAK/BAS
adds an exten.sion to the filename.

RENAME ABU>E/DAT TO ABU>EF/DAT
changes the file name only.

RENAME PAYROLL1/TXT. GSR TO PAYl<:OLL2/TXT
changes the filename; the password is retained automatically.

RENAME FILE1:3 TO FILE2
changes the filename of the file on drive 3 only.

TIME (set real-time clock)

TIMEV,hh: mm :ss

where hh is a 2-digit hours specification
mm is a 2-digit minutes specification
ss is a 2-digit seconds specification

This command sets the clock. On power-up, the clock is reset to
00:00:00.

Note: TRSDOS maintains a 24-hour/day clock format. After
23:59:59, the clock starts over at 00:00:00, and the day is
incremented.

The current time is stored at locations hexadecimal 4040-4046;
these values are updated via the realtime clock as long as interrupts
are enabled.

Example:

TIME 08:24:00

See DA TE and CLOCK

4-23

TRSDOS Commands

VERIFY (automatic read-after-write)

VERIFY [lp(param)]

where param = ON or OFF; ON is the default.

VERIF'T' •MO=ii•
causes TRSDOS to verify all user disk writes (for example, file-writes
from DISK BASIC). This will be useful when you want to be sure
that no data is lost or altered during a disk write. For example,
before you COPY a file, you may want to enable VERIFY.

However, when VERIFY is on, disk accesses arc only about 50
percent as fast as normal.

Typing:

VERIFY (OFF) '*O*•
disables the automatic read-after-write verification.
(note that TRSDOS powers up in a VERIFY (OFF) condition.)

Verify does not affect system table and directory writes; they are
always verified.

4-24

Extended
Utilities

Contents of This Section

TRSDOS Utilities . 2
BACKUP 2 FORMAT 4

Auxiliary Utilities . 6
TAPEDISK 6 DISKDUMP/BAS 8

Section 5 - Page 1

T
R
s
D
0 s

Extended Utilities

TRSDOS Utilities
These are special programs, not strictly a part of TRSDOS, which
you can call to perform some very useful functions. Unlike system
routines and library commands, these extended programs may use
memory locations above hex address 6FFF; therefore any programs
you have in RAM may be lost when you load a utility program.

BACKUP (duplicate a diskette)
BACKUP[l,6:dJ1,6TO1,6:d2]

where :di is a specification for the source drive
:d2 is a specification for the destination drive
dl,d2 = 0,1,2 or 3.

If you omit the drivespecs, BACKUP will prompt you to enter the
source and destination drive numbers one at a time.

This utility duplicates an entire TRSDOS or data diskette. You can
use any two drives for the backup, or you can perform the backup
using drive 0, by swapping source and destination diskettes when
BACK UP tells you to.

If the destination diskette is unformatted, BACKUP will format it,
locking out any defective tracks, and will then proceed to copy
all source disk files onto it. (If the destination disk cannot contain
all the source disk data because of locked out tracks, the backup will
be rejected.)

BACKUP will accept a pre-formatted diskette only when its Master
Password and Diskette Name match that of the source disk. In this
case, BACK UP will skip the formatting step and begin the copy and
verify process. If for some reason, BACKUP rejects a diskette,
erase the diskette with a bulk eraser and try again.

Examples:
BACKUP
BACKUP : 0 TO : i)
BACKUP :0 TO :1

Here's a typical BACKUP sequence, using only Drive 0.

r DOS READY

5-2

'\

Extended Utilities

TR5D05 E:ACKUP UTILITY VER 2. 1

BACKUP [>ATE <MM/C>D/YY) ? J~i

<INSERT SOURCE DISK>

BACKUP will then prompt you to insert source (original) and
destination (duplicate) diskettes as necessary.

When using two drives for the BACKUP, you won't have to do any
swapping.

IMPORTANT NOTICE
The BACKUP utility is provided solely for your personal use in
maintaining safe copies of your TRSDOS and data diskettes.
BACKUP automatically places copyrighted TRSDOS software
onto each destination disk. TRSDOS users may BACKUP the system
software solely for personal use.

See the Copyright Notice at the beginning of this Manual for more
details.

5-3

Extended Utilities

FORMAT (prepare a data diskette)

I FORMAT

This utility lets you prepare data diskettes containing a minimum of
system information and leaving you with a maximum amount of
space for program and data files. (TRSDOS diskettes have 44
granules/55K bytes available for your files; data diskettes,
67 granules/83. 75K bytes.

Note: Data diskettes can only be used in drives 1,2, and 3, except
during a BACKUP or FORMAT.

FORMAT takes a blank (new or magnetically erased) diskette,
records track/sector boundaries on it, then initializes it with
directory and bootstrap files. During the formatting process,
TRSDOS will let you specify any tracks you'd like to lock out, so
you can use them for non-TRSDOS files.

Unless you have another (non-TRSDOS) means of accessing the
diskette, don't lock out any tracks.

FORMAT will lock out any defective tracks, to prevent data
from being lost in these areas.

If you begin to get READ errors during accesses to a diskette,
erase the diskette and re-format it. If there are defective tracks,
FORMAT will lock them out, and you'll be left with an other
wise usable diskette.

5-4

To lock out tracks . ..

Specify them individually or as a range.

Example:
1,3-5 locks out tracks 1,3,4,5.

TRSDOS will never try to write to locked-out tracks.

Herc is a typical FORMAT sequence, using Drive 1.

DISK FORMATTER UTILITY 2. 1

WHICH [)RIVE IS TO BE U~,E[) ? I •*ii=li•
[)JSKETTE NAME ? 'lfliii •*0:1:1
CREATION DATE (Mt1/D[>/Y't') ? ~•• •*ii:Ji•
MASTER PASSWORC> ? - •*O=lii
DO YOU WANT TO LOCK OUT ANY TRACKS? 'fl:(l:fai@;•
WHICH TRACKS (0-34)? ,1¥·~1 i*1•j;1
FORMAT THE LOCKED-OUT TRACKS? :I/ 1§~11:j;j

Extended Utilities

5-5

Extended Utilities

Auxiliary Utilities
TAPEDISK (copy tape file to disk file)

This utility lets you load a SYSTEM tape into RAM, and then dump
it into a specified file on the disk. (SYSTEM tapes are created with
the Editor/Assembler, TBUG, or supplied by Radio Shack.)

Do not attempt to use TAPEDISK to load tape files which load
below hexadecimal address 54F4 (decimal 21748). TAPEDISK
uses this area.

Note: Most Radio Shack SYSTEM tapes designed for use with
LEVEL II TRS-80's will not work under DISK BASIC, because of
differences in RAM usage under DISK BASIC and LEVEL II.

To load and execute TAPEDISK, type:

TftPE[)lSK IL1H#;•
TAPED I SK will come up with the prompt,

?

Any time the prompt is displayed on the current line, you can enter
one of the three TAPEDISK commands.

I) Load from tape

C

is the command to turn on the Recorder. (To use TAPEDISK,
you should connect the recorder directly to the TRS-80 tape jack,
not to the Expansion Interface jack.)

Type:

?C ilU•li•
When the file has loaded, you can load another SYSTEM tape, or
enter another command.

5-6

Extended Utilities

2) Dump to disk

Flpfilename [/ex tl {.password] :dlpaaaalpbbbbl/>cccc

wherefilename is a TRSDOS filename
/ext is an optional extension;
.password is an optional password specification;
:d is a required drivespec, d=O, 1, 2 or 3;

aaaa is the hexadecimal starting address in RAM;
bbbb is the hex ending address in RAM;
cccc is the entry point for execution of the file.
All addresses are in 4-digit hexadecimal form.

When you're ready to dump the program from RAM onto disk, type in
the F command. For example, if the program loaded into RAM
addresses 7000-70FF, and the entry point is at 700A, you'd type:

?F USRCODE/CMD: 1 7000 70FF 700A j\Hjj:j;j

After the dump, the prompt will return.

3) Exit to TRSDOS

E

This command returns you to TRSDOS, via the normal re-entry
(no re-initialization).

Below is a typical T APEDISK display sequence.

()05 READY

?C

DOS READY

5-7

Extended Utilities

DISKDUMP/BAS (examine disk file)
This is a BASIC program. To execute it, you must load DISK BASIC
first, and then load DISKDUMP/BAS:

r r &1ui-1m;1

Hm4 MANY FILES? 0~0=1;1
r1EMOR'r' SIZE? U~O#i;I
RADIO SHACK DISK BASIC VERSION 1. 1
READY
RUN!!ll~cln:-!::: 1 a~ •• a ;1

DISKDUMP lets you look at the contents of any of your disk files.
It will help you experiment with various random and sequential disk
output statements, and also help you to debug disk 1/0 routines.

The program is written to dump to the Line Printer. If you do not
have one connected, change all LPRINTs to PRINTs (lines
170,240,250) and change line 160 to:

160 C:iETL SN

This program prompts you to enter the filename and then to enter
the sector you want to examine. You can simply press •UH=h•
without a number and the sector-by-sector examination will be
sequential, starting with sector 1, the first physical record in the
file.

If you specify a sector number higher than the EOF number
(end-of file), no error message will be given and the "sector" will
appear as zero-value bytes.

The sectors are printed 16 bytes at a time. These 16 bytes are dis
played first in hexadecimal code, then with the corresponding ASCII
code. The ASCII representation is surrounded by ! symbols. Periods
are substituted for bytes which have no alphanumeric representation.

Below is a typical DISKDUMP session.

5-8

SECTOR DUt1P UTILIT'r' 1. 1

FlLESPEC: .~•

SECTOR NUMBER (OR ✓ ENTER·' FOR NEXT SECTOR): '*ii=li\

FI LE SPEC : SEG!CHECK/TXT

(1

16

48
64
80
96

112
128
144
160
176
192
208
224
240

35 20 43 4C 5:< 3:A 20 43:
30 0D 31 30 20 41 24 3[,
46 41 24 3() 22 22 54 48
49 46 20 41 24 :m 22 40
0D 32 30 20 50 52 49 4E
42 24 2B 41 24 3A 47 4F
50 52 49 4E 54 3A 50 52
20 49 4() 41 47 45 20 57
4E 20 4E 45 !58 54 20 4C
4e 52 24 2e 39 31 29 22
4C 49 4[) 49 54 45 52 29
49 2!5 3[) 31 20 54 4F 20
20 50 52 49 4E 54 20 41
42 24 2C 49 25 29 29 43
3A 4E 45 58 54 0D 33 35
30 20 4F 50 45 4E 22 4F

Extended Utilities

SECTOR: 1

4C 45 41 52 20 31 30 30
49 4E 4B 45 59 24 3A 49
45 4E 31 313 0D 31 35 20
22 54 48 45 4E 20 32 3:5
54 41 24 38 J:A 42 24 3[>
54 4F 31 30 0() 32 35 20
49 4E 54 22 44 41 54 41
49 4C 4C 20 41 53: 20 4F
49 4E 4~; 2E 20 28 22 43
3() 42 !59 54 45 20 44 45
22 0D 3:3 30 20 46 4F 52
4C 4~, 4E 28 42 24 29 3A

5} 43 28 4[) 49 44 24 28
48 52 24 28 39 ::a 29 :rn
20 50 52 49 4E 54 0[> 35
22 2C :n 2C 22 54 45 53

!5 CLS: CLEAR 100!
! (1. 113 A$= l NKE'l'$: I !
!FA$='"'THEN10. 15 1

!IF A$="@"THEN 25!
! . 20 PRINTA$.; : E:$= !
!B$+A$:GOT010. 25 1

! PR INT : PR INT II DATA I

I IMAGE MILL AS (I!

!N NEXT LINE. ("C'
!HR$(91)"=BYTE [>E!
!LIMITER)". 30 FOR!
!1%=1 TO LEN(8$): 1

PRINT ASC(Ml(.l$(I

!B$, l%))CHR$(91); 1

! :NEXT. 35 PRINT.5 1
•

!0 OPEN"O",1, "TES!

5-9

TRSDOS
Technical
Information

Contents of This Section

Memory Organization . 2
Disk Organization . 2
File Structure 3
System Routines for Assembly 1/0 5

Data/Device Control Blocks . 6
Physical and Logical Records 7
Fundamental TRSDOS 1/0 Calls 8

TRSDOS Error Codes/Messages 12

Section 6 - Page 1

T
R
s
D
0
s

TRSDOS Technical Information

Memory Organization
The TRS-80 Disk Operating System is comprised of 1 K of ROM
resident CIO (Character-oriented 1/0) drivers and 4K of RAM drivers,
schedulers, tables, pointers, etc. The ROM resident CIO drivers are
also used by LEVEL II BASIC and therefore are part of its 12K
ROM requirement.

Since LEVEL II is upward compatible with DISK BASIC, an
additional 0.5K of RAM is required for both versions of BASIC.
This means that user memory starts at hex 5200, resulting in 11.SK
of user RAM in a 16K machine.

Note: The memory which is completely untouched by both
TRSDOS and DISK BASIC code begins at hex 7000.

TRSDOS is comprised of a resident system and several overlays
which are loaded from disk as the need arises (for example, to open
or close a file).

The system has a modular design. System entry-point vectors
are in the lowest portion of the 4K RAM, followed by the interrupt
handling, disk file handling, task scheduling and general purpose
resident system routines. System buffers and overlays comprise the
last portion of the 4K RAM requirement.

Since all major system commands are actually loaded as needed
from disk in the form of utilities (the "library commands" and the
extended utility programs), the TRSDOS system facilities can easily
be enhanced without affecting the RAM memory requirement.

Disk Organization

Each TRSDOS system diskette contains a TRSDOS system, a utility
command library, a file directory, and system tables.

The minimum system overhead amounts to one full track of directory
information and a half track of TRSDOS bootstrap program and
other information. This means that every TRSDOS diskette is self
loading, although it may or may not actually contain the TRSDOS
system. This is done to prevent the Computer from attempting to
bootstrap a diskette containing only user data files.

The utility command library is optionally available on the diskette.
Since the utility command programs are not always required,
it will often be advantageous for multi-drive users to format
diskettes for use in drives 1 through 3. Such "data diskettes"
contain a minimum ·of system code, leaving more space for user

6-2

TRSDOS Technical Information

files. Maximum file size is limited only by the physical size of the
diskette, since a file must be wholly contained on one diskette.

Each diskette is single-sided and has 35 tracks of information.
Each track contains 10 sectors of 256 bytes each. See Mini Disk
Operation, "How a Diskette Works".

Normally, data read/write operations may only be initiated at sector
boundaries, and must consist of exactly 256 bytes. However,
TRSDOS allows the user to have maximum flexibility with minimal
effort by automatically blocking and de-blocking all file accesses
to user-specified logical record lengths, even if this requires
"spanning" of two sectors.

The system disk file structure allows maximum use of disk file space
by automatically segmenting files across a diskette in several small
pieces. These pieces are correlated into one logically contiguous
file by the system without your needing to know the physical file
location. This structure eliminates time-consuming disk-packing
operations.

File Structure
A TRSDOS file is composed of one or more segments of storage
space. Each segment consists of from one to 32 physically
contiguous granules of storage. A granule is the minimum
allocatable unit of storage, and consists of five sectors (1.25K bytes).
(See Figure below).

Since a file is always lengthened by granules, a small amount of free
storage is generally present at the end of every file. This free
storage allows minor file additions to be made in space which is
physically contiguous to the file.

The effect is to decrease the amount of "thrashing" present in a file
which has had frequent additions made. (A wholly sector-mapped
system could not offer this benefit.)

Every time a disk file is extended (either initialized or lengthened),
extra granules may be allocated to that file, depending on the file's
accumulated length, diskette space, saturation, etc. These extra
granules, along with all granules after the one containing the file's
EOF mark, are recovered and returned to the system when the file
is closed.

6-3

TRSDOS Technical Information

A TRSDOS file

FILE:

SEGMENT: _G_RA_N_U_L_E_I_G_R_A_N_U_LE_2__. _G_R_A_N_U_L_E_N_

GRANULE: SECTOR X SECTOR X+I SECTOR X+4 _________ __, ______ ______ __,

SECTOR: BYTE I BYTE2 BYTE 3

LRN: Logical Record Number, used to specify an individual,
user-defined logical record. Such a logical record is the
smallest unit of information which can be addressed
during disk input/output (a physical record is the unit
which is actually read from or written to disk).

BYTE 256

File: A group of logical records; the largest unit of information
which can be addressed by a TRSDOS command.

Sector: A physical record, composed of 256 contiguous bytes.

Granule: The minimum allocatable unit of storage for a particular
file.

6-4

TRSDOS Technical Information

System Routines for Assembly-Language 1/0
This information is provided for customers who wish to write their
own assembly level I/O routines. An explanation of the calling
sequence and parameters for each necessary 1/0 routine is given.
A knowledge of Z-80 machine code is assumed.

The following notations are standard in this section:

HL= > xxxx Registers HL contain the address of (point to)
xxxx in machine format. (If address of
xxxx=34B2H then the values in the registers are:
H=34; L=B2)

DE=> xxxx Registers DE contain the address of (point to)
xxxx in machine format. (If address of
xxxx= 5AF 1 H then the values in the registers are:
D=5A;E=Fl)

B= xx Register B contains the numeric value of xx in
binary form. If xx=64 decimal, then B=40H.

A= xx Register A contains the numeric value of xx in
binary form. If xx= 127 decimal, then A=7FH.
Register A is used to return the TRSDOS error
code for I/O calls. A complete list of error codes
and their meanings appears at the end of this
chapter.

Z=OK Zero flag is set (OK) if successful return from the
system routines.

X'nnnn' Hard RAM address in !lex notation (e.g., 4020 is
X'402D').

LRL Logical Record Lengtll. 1-255 bytes only. You
can define records any length you wish up to 255
bytes maximum. A length of zero is a special
case for physical records only, and indicates
the LRL=256 bytes.

BUFFER 256 user designated bytes in RAM for TRSDOS
to read sectors from or write sectors into. If
LRL=0, this area is the responsibility of the user
to manage before and after I/O. TRSDOS
manages this area if LRL is between 1 and 255
bytes. Do not alter this area when using logical
record processing.

UREC User record: the address of the contiguous
RAM byte-string assigned by the user as his
logical record area. Its length must be equal to
LRL. It is a different area from BUFFER.

6-5

TRSDOS Technical Information

DCB before OPEN and after CLOSE:

The DCB is defined as 3 2 contiguous bytes of RAM designated by
the user. Before OPEN and after CLOSE, it is a left justified,
compressed (no spaces) ASCII string, as in a standard TRSDOS
filespec:

CONTENTS OF 32 - BYTE DCB

Notes: /EXT, .PASSWORD, :Dare optional.
$ stands for a carriage return (X'OD"I
If stands for a blank (X'20')

Explanation of DCB while OPEN:

lsb/msb is least significant byte followed by most significant byte in
Z80 RAM format (i.e. addr=7CC8 in RAM is C8 7C).

Addr.

DCB+0
+3
+5
+6
+7
+8
+9

+10
+12
+14

Len. Explanation

3 - Reserved
2 - Physical Buffer address (lsb/msb)
1 - Offset to delimiter at end of current record
1 - File drive number residence
1 - Reserved
1 - EOF offset of last delimiter in last physical record
1 - LRL (logical record length)
2 - NRN (next record no. - open sets=X'0000' - lsb/msb)
2 - ERN (ending record no. - last in file - lsb/msb)

18 - Reserved

NRN Next Record Number defines which record is to be read or
written by the next system call for READ or WRITE. It is
automatically incremented by one after each system call. In order to
process random files, use the POSN call to direct TRSDOS to the
record you wish to transfer next.

ERN Ending Record Number is the last record number currently
in the file. It is put into the directory at CLOSE time, so if it is
expected to be correct, the user must close his files after adding
records to a file. This value may also be used to position to end of
file so that new records may be added to the end of the file. To
position to the end of file use a call to POSN with a record number
of ERN+ 1. POSN is described later.

6-6

TRSDOS Technical Information

Physical and Logical Records in TRSDOS

A physical record is defined as one sector of disk. One sector of disk
contains 256 user data bytes. The artificial term "granule" is
defined to be 5 sectors of disk space. There are 2 granules on each
of the 35 tracks on the disk. A granule is the least amount of space
allocated by TRSDOS. For programming purposes, the physical
records in a file are numbered from Oto N. The largest record
number (N) in a file will then be five times the number of granules
allocated minus one ((5*G)-l). All TRSDOS granule allocations
are made as needed at the time of write, not when the file is
created.

Bytes Sectors Granules Tracks Disk

256 1
1280 5 1
2560 10 2 1

89600 350 70 35 1

Disk Space Table: For each 5-1/4" Disk Drive

A logical record is defined by the user of TRSDOS. It may be
anywhere from 1 to 255 bytes in length. Once a file is opened with
a specific LRL (Logical Record Length), the length is fixed until
the file is closed. To change a file's LRL, you must CLOSE it and
re-OPEN it with the new LRL.

Each opening of the file sets a single, fixed record-length.
TRSDOS will "block" logical records into (or from) one physical
record for maximum space utilization on the disk.

Blocking is putting more than one logical record into one physical
record. For instance, four 64-byte logical records will fit into one
256-byte physical record. A logical record may be broken into two
parts by TRSDOS in order to fill the last portion of one physical
record entirely before beginning to use the next physical record
(i.e. records are spanned). This occurs when the physical record
length is not an even multiple of the logical record length.

If the user wishes to do his own blocking, he may specify a logical
record length of 0 bytes at the time of INIT /OPEN and must himself
manage the contents of the physical record buffer area of 256 bytes.
TRSDOS will not move a logical record for the user if LRL=0; in
this particular case it will only read/write the physical record
to/from the buffer.

6-7

TRSDOS Technical Information

Fundamental TRSDOS 1/0 Calls
There are eight fundamental TRSDOS routines involved in handling
file 1/0. These are:

INIT

OPEN

POSN

READ

WRITE

VERF

CLOSE
KILL

Creates a new file in the directory and opens it.
No granule allocation is done.

Opens an existing disk file.

Position for reading/writing a particular logical
record.

Reads one logical record into RAM from disk or
from the physical buffer.

Writes one logical record from RAM onto disk or
into the physical buffer.

Writes then verifies by reading back and comparing
to the original data written from RAM. Only
pertains to LRL=0 physical records.

Closes an open file.
Closes a file and erases it from the directory.

The detailed calling sequences and discussions for each of these routines
follow. Note that all of these system calls use register F and do not
restore its value before return. In order to properly apply this data,
you should read through all of these descriptions and clear up all of
the points that are not obvious to you by using other reference
materials. If you are successful in doing this you will find that
TRSDOS is a workable tool for your programming ideas. The jump
vectors supplied here and the descriptions especially pertain to
TRSDOS Version 2.1 only. Future releases of TRSDOS may alter
some of these descriptions or addresses.

INIT (jump vector = X'4420')

6-8

INIT is provided as an entry point to TRSDOS which will
create a new file entry in the directory and open the DCB
for this file. INIT scans the directory for the filespec name
given in the DCB. If the filespec name is found, INIT
simply opens the file for use. If the name is not found,
a new file is created with the filespec name.

entry: HL= >BUFFER (see beginning of this section for notation)
DE=>DCB
B= LRL
CALL 4420H

exit: Z=OK
C carry flag is ON if a new file was created
A=TRSDOS error code. (Error codes listed at end of

this chapter)

TRSDOS Technical Information

OPEN (jump vector = X'4424')
OPEN provides a way to open the DCB of a file which
already exists in the directory. The DCB must contain
the filespec of the file to be opened before entry to OPEN.

entry: HL= > BUFFER
DE=> DCB
B= LRL
CALL 4424H

exit: Z=OK
Z=0 if file does not exist.
A=TRSDOS error code.

POSN (jump vector= X'4442')
POSN positions a file to read or write a randomly selected
logical record. Since it deals with logical records, the
proper computation is done to locate which physical
record(s) contain the data. Following a POSN with a
READ or WRITE will transfer the record to/from RAM.

Note that positioning to logical record zero sets the file
to read the first logical record in the file. To position to
end of file in order to add new records onto the end, use
the record number ERN+ 1 (see page 2).

entry: DE=> DCB (must have been opened previously)
BC= Logical record number to position for.
CALL 4442H

exit: Z=OK
A=TRSDOS error code.

READ (jump vector = X'4436')
If LRL>0, READ transfers the logical record whose number is

in the DCB as NRN (see page 2) into the RAM area
addressed as UREC for the length LRL as defined at open
time. The record comes from the RAM BUFFER defined
at open time. If TRSDOS must read a new physical record
to satisfy the request, it will do so. "Spanned" logical
records will be re-assembled as necessary. READ auto
matically increments NRN by one in the DCB after the
transfer is completed. !NIT/OPEN sets NRN=X'0000' in
order to read the first record with the first READ.

If LRL=0, READ transfers one physical record into the RAM
BUFFER, which was defined at open time, from the disk
file. Registers HL are ignored. READ increments NRN
as above.

6-9

TRSDOS Technical Information

6-10

entry: HL= > UREC if LRL is not zero. Unused if LRL=0.
DE=> DCB
CALL 44364

exit: Z=OK
A=TRSDOS error code. (EOF=X'IC' or X'lD')

(see errors 28,29 for EOF or NRF)

WRITE (jump vector = X' 4439')
IF LRL> 0, WRITE transfers the one logical record from

the RAM area addressed as UREC for the length LRL as
defined at open time. The record goes into the RAM
BUFFER which was defined at open time. If TRSDOS
must write a physical record in order to satisfy the
request, it will do so. "Spanning" will be handled by
TRSDOS as necessary. At !NIT/OPEN time the DCB
value of NRN is set to X'0000' so that the first record will
be written. After each logical record is transferred, the
NRN value in the DCB will be incremented by one.

IF LRL=0, WRITE transfers one physical record from the RAM
BUFFER into the disk file using the NRN in the DCB.
BUFFER IS DEFINED at INIT/OPEN time only. The DCB
value NRN is updated as above, after the WRITE.

entry: HL= > UREC if LRL is not zero. Unused if LRL= 0
DE=> DCB
CALL 4439H

exit: Z=OK
A=TRSDOS error code.

VERF (jump vector = X'443C')
The only difference between VERF and WRITE is that
VERF writes one physical record to disk and then reads
it back into a special TRSDOS RAM area not defined by
the user. This special area and the original write buff er
are then compared byte by byte to assure that the record
was successfully written.

entry: HL= > Same as WRITE above.
DE=> DCB
CALL 443CH

exit: Z=OK
A=TRSDOS erroi: code.

TRSDOS Technical Information

CLOSE (jump vector= X'4428')
CLOSE closes a file from the last processing done. It is
very important to do a CLOSE on every file opened before
the program ends. If you do not close a file, the directory
entry for this file is incorrect if any new records have been
written into the file. Other cases are not given here, but it is
very important to TRSDOS that all of the "housekeeping"
is complete for file management.

entry: DE=> DCB
CALL 4428H

exit: Z=OK
A=TRSDOS error code.

KILL (jump vector = X'442C')
KILL deletes the directory entry for an open file and then
completes the close on the DCB. The disk space released
by the old file is now rc-useable for other purposes.
Otherwise KILL is the same as CLOSE.

entry: DE= > DCB
CALL 442CH

exit: Z=OK
A=TRSDOS error code.

Supplementary Information

Other routines and addresses which may be of interest are defined
here. Pay particular attention to the error routine. It does NOT
perform error recovery. It displays TRSDOS error messages on the
video display.

(1) CALL 402DH - Normal return to TRSDOS at program end.

(2) X' 431 8': address of the 64-byte buff er that contains the
last TRSDOS command that was entered. Useful
to decode special parameters entered when
program was executed (run).

(3) If HL = > 8-byte buffer, then:
CALL 446DH returns the time of day into the 8 bytes

in the ASCII format - HH:MM:SS
CALL 44 70H returns the date into the 8 bytes in the

ASCII format - MM/DD/YY

Binary forms of the time and date are located in TRSDOS
RAM at these locations:

X'4040' clock - real time clock heartbeat count. 25ms.
X'4041' time - binary - 3 bytes - sec,min,hrs
X'4044' date - binary - 3 bytes - yr, day, man

6-11

TRSDOS Technical Information

(4) Printing TRSDOS error codes on the video display.

CALL 4420H

JR Z,OKGO

OR 80H

CALL 4409H

Example of system 1/0 call. Any call
is ok. Zero flag not set means an error
has occurred during the 1/0 attempt.
Ignore error message display if no
error.
Optional for detailed error message.
Register A already contains proper
code for a single line message display.
Display error message on video screen.

Optional user error recovery code goes here

OKGO continue with program here - - -

TRSDOS Error Codes - Returned in Register A
decimal
number

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

prob.
causes*

MD
D

XK
MD

FMD
p
p

UP
MD

D
XC
MD

FMD
XD

UDX
PS

MPDS
MPDS

UP
MPDS
MPDS
MPDS
MPDS

UP
UP

error
description

No error
Parity error during header read
Seek error during read
Lost data during read
Parity error during read
Data record not found during read
Attempted to read system data record
Attempted to read system data record
Device not available
Parity error during header write
Seek error during write
Lost data during write
Parity error during write
Data record not found during write
Write fault on disk drive
Write protected diskette
Illegal logical file number (deb bad)
Directory read error
Directory write error
Illegal file name (deb bad)
GAT read error (Granule Allocation Table)
GAT write error
HIT read error (Hash Index Table)
HIT write error
File not in directory
File access denied (protection violation)

*See Explanation, next page.

6-12

TRSDOS Technical Information

decimal
number

26
27
28
29
30
31
32
33
34
35
36
37
38
39-62
63

prob.
causes

UP
UP

p
p

UP
UP
UP
UP

MPUS
xcs

PUXC
p

UP

p

error
description

Directory space full (48 files max)
Disk space full (70 granules max)
EOF encountered (End Of File)
NRF (No Record Found) out of file range
Full directory. File can't be extended.
Program not found
Illegal drive number specified
No device space available for new device
Load file format error. Not a program.
Memory fault
Attempted to load ROM memory
Illegal access attempted to protected file
File has not been opened
Not defined yet. Reserved
Unknown error code

Explanation of probable cause codes: (column 2)

C = TRS80 CPU fault
D = Disk drive fault
F = Diskette not formatted
M = Diskette media fault

P = User program error
S = TRSDOS fault. Reboot
U = User procedural error
X = Expansion Interface fault

6-13

DISK
BASIC

Contents of This Section

Introduction 2
Enhancements to LEVEL 11 . 5
Disk Features 26

File Manipulation 28
File Access 33

Sequential Access Techniques 60
Random Access Techniques 65
DISK BASIC Error Messages 77

Section 7 - Page 1

L
A
N
G
u
A
G
E
s

DISK BASIC

Introduction
OISK BASIC is a set of enhancements to LEVEL II BASIC, plus
features to allow disk input/output of BASIC programs and data.
It is a memory image file stored on the TRSDOS software diskette
with the name BASIC and extension /CMD.

When DISK BASIC is loaded into RAM, it automatically takes
control of the LEVEL II BASIC ROM program, using almost all of
its routines and adding others. This is possible because LEVEL II
was designed with upward compatibility built-in. (You can see this
by examining the memory map for LEVEL II, in particular, hex
addresses 37DE-37EC.)

When loaded, DISK BASIC occupies approximately 5.8K bytes of
RAM, beginning at hex address 5200 (decimal 20992).

To load and execute DISK BASIC, first power-up the Disk Operating
System (see System Operation), so that

()05 READ'r'
is displayed. Now type:

BASIC iUHliJ
TRSDOS will load BASIC into RAM, and BASIC will begin the
"initialization dialog". This is a series of questions and answers
which tell BASIC how to organize memory according to your needs.

The first question is,

HOW MRNY FILES?_

You repond with the maximum number of disk files that will be
open (in use) at any one time - any number from zero to 15.

(Every program or data set you store on the disk is referred to as a
"file". In fact, everything on the disk, including system software,
exists in the form of files.)

The number you enter tells BASIC how many disk 1/0 buffers and
data control blocks to create (for definitions, see Glossary). If n files
are to be in use at once, then n buffers will be required. Each buffer
will take 290 bytes from your available RAM (256 for the buffer plus
34 for a data control block [DCB]), so don't enter an unnecessarily
large number.

If you simply press iUHH;J without entering a number, BASIC
will use a default value of 3; so you'll be able to have 3 file buffers
in use at once.

7-2

Note: DISK BASIC automatically creates a buffer for loading, saving
and merging BASIC programs. This buffer exists in RAM below
any data file buffers you may request. It is always available for
program I/0, regardless of how you answer the HLES? question.

Suppose you're going to be using 2 files: 1 for inputting data,
1 for outputting data. Then you might answer 2 to the FILES?
question. However, if only 1 of these files will be open at once, then
you really only need to reserve 1 file buffer/control block.

Examples:

HOW MANY FILES? 81Uu4;1
causes BASIC to set aside zero buffers for 1/0 to disk files. You
won't be able to open files, but you will have the maximum amount
of RAM for use by your program.

HOW MANY FILES? S.5 •3~04;1
tells BASIC to create 15 1/0 buffers and control blocks; you will
then be able to have 15 files open at once; however, this will reduce
your available memory by 15*290 = 4350 bytes.

HOW t1ANY FILES? •U•Ui;i
tells BASIC to use a default of 3 for the number of files to be in use
at once.

After you answer the FILES question, BASIC will ask:

MEMORY SIZE?_

You respond with the highest memory address (in decimal form) you
want BASIC to use for storing and executing your BASIC programs.
Addresses above the number you specify will then be protected
from use by BASIC.

Here's why you might want to protect memory:
You can load machine-language programs or routines into high
memory, and then access these routines from DISK BASIC via
specially defined USRn functions, or via the SYSTEM command.
These machine language routines may be loaded from tape using the
SYSTEM command, LOADed in the DOS READY mode, or placed
in memory one byte at a time using either DEBUG or BASIC POKE
commands. If you do not reserve memory, such routines will be
destroyed during execution of BASIC statements.

DISK BASIC

7-3

DISK BASIC

Example:

MEMORY SIZE? .. ~.• •Uii=hi
causes BASIC to protect addresses above 3 2000. If you have 16K
of RAM, this means that you'll have 32767-32000= 767 bytes
protected for storing your machine language routines.

If you don't want to reserve any memory, just press l*U@;I
without typing a number.

MEMORi' SIZE? •UO=h•
You will then have the maximum amount of RAM available for use
by BASIC.

Refer to the Memory Map for decimal addresses of the various
TRS-80 memory configurations (16K, 32K, 48K).

After you answer the MEMORY SIZE question,

RAO IO SHACK [> I SK BASIC VERSION 1. 1
REAOi'
)_

will be displayed. You are now operating under DISK BASIC.

To exit BASIC and return to the DOS READY mode, type:

CM[>"S" '*O=iii
This results in a normal return to DOS - without re-initialization of
the system. If you have a BASIC program in RAM, it will be lost, so
be sure to save it on disk or tape before using CMD"S".

7-4

DISK BASIC

Enhancements to LEVEL II BASIC
DISK BASIC adds many features to LEVEL II which are not disk
related. They are listed below along with abbreviated descriptions.
Detailed descriptions follow in alphabetical order.

&H
&O
CMD"D"
CMD"R"
CMD"S"
CMD"T"
DEF FN
DEF USR

INSTR
LINE INPUT
MID$=

TIME$
USRn

Hexadecimal-constant prefix
Octal-constant prefix
Enable and load the real-time debugging program
Enable interrupts (start real-time clock)
Normal return to TRSDOS Uump to EXIT routine)
Disable interrupts (turn off real-time clock)
Define an implicit BASIC-statement function
Define the entry point for an external

machine-language routine
Instring function; find substring in target string
Input a line from keyboard
Replace portion of target string (used on left

of equals sign)
Get time and date from real-time clock
Call external routine (n=O, 1,2, ... ,9)

Cassette Operations

Before any BASIC cassette input or output operation, you must
disable interrupts with the CMD"T" command. This is because such
cassette operations are timing-sensitive and cannot work if they are
being interrupted every 25 milliseconds. When the cassette operation
is complete, you can re-enable interrupts by executing the statement
CMD"R".

CLOAD allows no filename in DISK BASIC. Therefore you cannot
use such a filename to sort through several tape files. CLOAD will
always load the first file encountered on the tape. CSA VE, however,
still requires the filename. This way, programs CSAVEd under
DISK BASIC can be loaded and sorted through via the LEVEL II
CLOAD"filename" command.

CLOAD? (CLOAD-verify), used in LEVEL II to compare a BASIC
program in RAM with one on tape, will not work with programs
saved on tape under LEVEL II. It will work with programs saved
under DISK BASIC.

7-5

DISK BASIC

Error Messages

When an error occurs, DISK BASIC "spells out" the full error
message, not just the abbreviation. This saves you from having
to look it up.

Example:
ERR0R(14) 14¢u\1;1

DISK BASIC responds with:
OUT OF STRING SPACE

Note: The ERROR function, used to simulate error conditions, will
work only with non-disk error codes.

&Hand &O (hex and octal constants)
Often it is convenient to use hex (base 16) or octal (base 8)
constants rather than their decimal counterparts. For example,
memory addresses and byte values are easier to manipulate in hex
form. &Hand &O let you introduce such constants into your
program.

&Hand &Oare used as prefixes for the numerals that immediately
follow them:

&Hdddd
where dddd is a 1 to 4 digit sequence composed of

hexadecimal numerals 0,1, ... 9,A,B, ... ,F.

&Oddddd
where ddddd is a sequence of octal numerals 0,1, ... ,7.

and &Oddddd< = 177777 decimal.
Note: The O can be omitted from the
prefix &O. Therefore &Oddddd=&ddddd.

The constants always represent signed integers.
Therefore any hex number greater than &H7FFF, or any octal
number greater than &077777, will be interpreted as a negative
quantity. The following table illustrates this:

Octal Hex Decimal

&1 &Hl 1
&2 &H2 2
&77777 &H7FFF 32767
&100000 &H8000 -32768
&100001 &H8001 -32767
&100002 &H8002 -32766
&177776 &HFFFE -2
&177777 &HFFFF -1

7-6

Hex and octal constants cannot be typed in as responses to an
INPUT prompt or be contained in a DAT A statement. Often the
hex or octal constant must be enclosed in parentheses to prevent a
syntax error from occurring.

Examples:

PRINT &H5200,&051000

prints the decimal equivalent of the two constants (both equal
20992).

POKE &H3C00,42

puts decimal 42 (ASCII code for an asterisk) into video memory
address hex 3C00.

100 FOR I=<&H3C00) TO (&H3FFF) STEP (&H40)
200 IF A=<&H37E8) THEN A=A+1

300 POKE Ar., (Xr. AND &HFF)
Masks the most significant byte of X% and POKEs the result into
location A%.

CMD"D" (execute DEBUG program)

I CMD"D"

Executing this statement causes the TRSDOS debugging program to
load and execute. (See TRSDOS Commands, DEBUG.) Your BASIC
program is unaffected, since DEBUG loads below DISK BASIC.

To return to BASIC without re-initialization, type

G •*O*•
The READY message will appear and you can continue in BASIC.

Once CMD"D" has been executed, DEBUG will take over whenever
you press the BREAK key. Pressing G i*•H;• will return you to
BASIC again. Type CONT to continue any program that was
executing when you typed BREAK.

To return from DEBUG to the BASIC initialization sequence, type
G5200 •*Oii• . You will lose any BASIC program text or
variable values.

DISK BASIC

7-7

DISK BASIC

Examples:

7-8

1(1(1 PROGRAM : [iEBUG
110 ,•· E:~:AMPLE OF D<ECUTIOH mTH DEBUG mTHIH A PF.'.OGRAM
120 .,
BO CLS. PRINT TAE:<15),; "[iEE:UG E'.v.:AMPLE": nrnn
141:1 PRINT"EHTERING DEBUG"
15(1 FOR I=i TO :,00: ND::T I 'DELA'r' A ~!HILE
160
170 ,.. *** EtHER [)EBUGG I NG PACKAGE ***
1:3(1 ...

190 CM[:r" [) 11

2(10
2113 ,· *** RETURt·l HERE ~lHEN II Ci II ENTER T'r'PE(:, 1 N C:•EE:UG ***
220 ...

2:)3 CLS: PRINT: PRINT "'r'OU HAVE F.:ETURNH:1 FROM DEBUG"
2413 END

DEBUG E;<:AMPLE

ENTERING DEBUG

DISK BASIC

AF= 44 42 -z----N-
BC = 69 01 =) 57 49 54 48 49 4E 20 41 20 50 52 4F 47 52 41 4~
DE= 69 88 => 44 22 00 C3 69 C8 00 ?A 93 FB 00 FD 69 D2 00 JA
HL = 40 87 =) 69 55 FF FF FF FF FF FF FF 00 00 00 80 00 00 54
AF'= FF FF SZ1H1PNG
BC'= 4D BE=) 51 51 CD FC 51 7E 23 18 EC 02 02 00 4E 03 32 E7
DE'= 01 07 => 4D 4F 52 59 20 53 49 5A 45 00 52 41 44 49 4F 20
~~'= 40 00 => F2 510610 CD 65 51 3A 50 40 FE 412013 CD F2
r:,.,: == 40 15 ::) 01 C (C 0(1 (10 0i:::1 48 49 137 :,::: 04 ::1 ::E 0i:::1 44 4F
IY = FF FF=) FF F3 AF C3 74 06 C3 00 40 C3 00 40 El E9 C3 9F
SP = BD 6C ==.:• BA 69 1E 1D 130 1313 04 134 20 (1(1 0(1 1X1 (1(1 00 00 00
F'C = 57 1)8 => El C9 3:A 29 58 F6 CO CC• (19 44 El C:9 [)7 E~:- J:E 11

1010 => 28 10 FE 44 28 0C FE 30 28 F0 FE 2C 28 EC FE 2E
1020 => 20 03 28 36 30 78 E6 10 28 03 28 36 24 78 E6 04
1(()) => C:1:.1 28 70 C9 3:2 t:•::: 4(1 21 J:i) 4:1. J:E, 20 C:9 FE 05 E5

t3 lmilJ 1041:1 => DE 130 17 :,? 1.4 CD fH 12 01 1:.11~1 (C :::2 FA 57 10 14

'r'OU HAVE F.:ETUF.:NE[:, FF.:OM [:iEE:UG
F.:EA[:i'11

)_

7-9

DISK BASIC

CMD"R" (start clock [enable interrupts])

I CMD"R"
------------- s--

Execute this command immediately after completion of a cassette
input/output operation to re-start the real-time clock. See CMD"T".

CMD"S" (return to TRSDOS)

I CMD"S"

Execute this command to initiate a normal return to the Operating
System command mode. This will not re-initialize the system, but
merely get you out of BASIC.

Be sure to save any BASIC program on disk or tape before using
CMD"S", as your resident BASIC program will be lost.

CMD"T" (stop clock [disable interrupts])

I CMD"T"

You must execute this command immediately before any BASIC
tape input/output operation. Such operations are timing sensitive
and cannot allow the interrupt-driven tasks (such as the real-time
clock, TRACE, and CLOCK-display) to "steal" time.

Here are the commands which must be preceded by execution of
CMD"T":

CLOAD
INPUT#-l
INPUT#-2
SYSTEM

CLOAD?
CSAVE
PRINT#-l
PRINT#-2

After completion of these operations, you can execute a CMD"R"
to re-enable interrupts.

Example:

7-10

10 OPEN" I", 1, "TEST /BAS"
20 · CM[> 11 T 11

: INPUT#i, A, B, C
10 Ct1[> 11R11

DISK BASIC

Note: After CMD"D", you can use CMD"T" to prevent BASlC from
transferring control to the DEBUG program when BREAK is pressed.

DEF FN (define function)

DEF FN varl(var2[,var ...]) = exp

where var 1 will be the name of the function, and is any
valid LEVEL II variable name

var2 and subsequent var-items are
used in defining what the function does

exp is an expression usually involving the variable(s)
passed on the left of the equals sign

This statement lets you create your own implicit functions. That
is, you only have to call it by name and the implicit function you
defined will automatically be performed. Once a function has been
defined with the DEF FN statement, you can call it simply by
referencing the function name prefixed by FN. You can use it
exactly as you'd use one of the intrinsic functions, e.g., SIN, ABS,
STRING$.

The type of variable used to name the function determines what type
of value the function will return. For example, if the function name
has the single-precision attribute, then that function will return a
single-precision value - regardless of the precision of the arguments.

Examples:

DEFFHA$(TITLE$, GRAPHICSiO=STRlHG$(LEN<TITLE$), GRAPHICSr.)

The function A$ will require two arguments - one integer, one
string; and it will return a string value.

DEFFNRC!(A)=1/(A*A)

The function RC! requires one argument, and returns a single
precision value, regardless of the precision of the argument.

The particular variable names you use as arguments in the DEF FN
statement are not assigned to the function; when you call the
function later, any valid variable name of the same type can be
used. Furthennore, using a variable as an argument in a DEF FN
statement has no effect on the value of that variable.

The function must be defined with at least one argument - even if
this argument is not actually used to pass a value to the function.
For example:

DEF FNR(A)=RND(0)

7-11

DISK BASIC

Examples:

10 DEFFNMLT(A,B)=A*B
.::::1::.1 INPUT "ENTER AF-:C:iUMENTS" .; K, 'r'
?0 PRINT "PRODUCT IS''; FNMLT(X,Y)

Notice that FNMLT is defined with arguments A,B, but that when
the function is called in line 30, variables X and Y are used. Any
two valid variable names can be used to pass values to the function.

[lEF FNRR (A, B) =A+ HH (B>+=RN[l (0)) Returns a random
number between
A and B.

[>EF FNL8$(A$)=LEFT$.;A$, :=.n Returns first 8
characters of string
argument

[>EF FNX# (A#., B#) = (A#-B#) * < A#-B#) Returns double
precision value of "the
square of the
difference"

7-12

1(1(1 / PROGRAM: smnm
110 EXAMPLE OF A STRING DEFFN FL~CTION
121:1
1?(1 ·' ******* FUl·ICTION TO CONCATENATE STRINGS *******
13:5
140 ()EF FNADD$ (A$, 8$) :-,: A$ + " " + 8$
15(1 CLS: PF-:nn TAB<l'.:1).; "STRHICi DEFFN E::<:AMPLE"
161:1 PF:ItH: Ft="": INPUT "ENTER FIRST NAME".; F:t
165 IF F$="" THEN EH[)
17C1 INPUT "ENTEP LAST NAME".; U
1:3(1

190 ··· ******* A[:,(:, F:t TO L$ MITH 1 BLAN!< IN BEHlEEN *******
200
210 2$ = FNADD$ (F$, L$)
220 PRINT TAB(€,).; "FULL t·IAME. "· 2$
2:::(1 GOTO 160

STR nm DEFrn E>=:AMPLE

ENTER FIRST 1-lAME:• JOHN •*04;1
ENTER LAST NAME? DOE l*Uj;I

FULL NAME: .JOHN [>OE

DISK BASIC

100 PROGRAM: M INMA:":
110 / rnAMPLE OF [)EFFN FEATIJF~E
12(1

B0 ·' ******* CiEF !NE MIN AHC) MAX FUNCTIONS *******
135 _,.

140 DEF FNMIN CA, 8) =(A+ B - ABS CA - B) / 2
150 DEF FNMA:=-:: <A., B) = (A + B + ABS (A - B) / 2
160 .,
170 ·' ******* REA[l 1ST VALUE - CALL IT THE MIN AH[l MA::< *****
1:3(1 ·' MN IS cu~:F:ENT MINIMUM VALUE
190 M),: IS CURRENT MAiOMLIM VALUE
20(1
210 REA() MN : M'.'.<: = MN
220 -~

2::121 / ******* GET l~E:-.:T VALUE AND FIN[) NHJ MIN/MR:=-:: ********
240 /
250 READ , : IF
260 MN = FNMIN
270 MX = FNMm,:
280 GOTO 25(1
290

II = ','
(MN.,
(M::-=:,,

99999 THEN 321:1 _.• 1v1=99999
,,,..) ·'GET NEM Mit·lIMUM
\.') ·'GET HHJ MA::·~IMLIM

3:(11;1 ·' ******** PF-:INT RESULTS *******
3:10
320 PRINT "MINIMUt1 VALUE :::" ., MN
J:J.1) PRINT "MA)•:IMUM VALUE =" M)•:
340 ,·

MEANS ALL DONE

:3:5(1 ·' ******* DATA FOLLOWS - LAST VALUE MUST BE 99999 *******
36(1 .,
370 DATA 1. 2, 2, 3, 4. 7, 5. 332, a 314, 6, 7, a 3, ~ 57, 99999

>RUM i*ii•ii
MINIMUM VALUE= . 314
MA>::It1UM VALUE = 9. 57
READ1r1

>Bt;Btft i-<X1>' 'f 0, <8, .·,, 1i J1
} o 6,, l~ <5) 4i Sl~9 •a~••a;•

>RUN 1#~114;1
MINIMUM VALUE= -1
MA:": I MUM VALUE = 9
READ1r'
)_

7-13

DISK BASIC

DEFUSR
(define entry address for USR routine)

DEFUSRn=nmexp

where n equals one of the digits 0, 1, ... ,9;
if n is omitted, 0 is assumed

nmexp specifies the entry address to a
machine-language routine.

This statement lets you define the entry points for up to IO machine
language routines. (In LEVEL II, where only one USR routine is
available, the entry point address is POKEd into RAM.)

Example:

10(1 DEFIJSR3=&H7[>00

Assigns the entry point 7000 hex, 32000 decimal, to the USR3 call.
When your program calls USR3, control will branch to your sub
routine beginning at hex 7000.

Herc are three ways to get a machine language program into RAM so
that it can be accessed via a USRn call:

1) Use the TRS-80 Editor Assembler, Radio Shack Catalog
Number 26-2002, to convert the source code into an object
file on tape; then load the tape under the SYSTEM
command (use MEMORY SIZE to protect the code from
destruction by BASIC).

2) Use the TRSDOS DEBUG program to type in the machine
code routine (then DUMP it to disk for safe-keeping);
call DISK BASIC and answer MEMORY SIZE so as to
protect the routine.

3) Have your DISK BASIC routine POKE the routine (decimal
values for each byte) into high RAM. MEMORY SIZE
should be set during initialization to protect the area you
will POKE into.

See USRn.

7-14

INSTR (string search function)

INSTR([n,] exp] $,exp2$)

where n specifies a position in exp 1 $ where the
search is to begin; if n is not supplied,
1 is assumed. (Position 1 is defined as
the first character in the string.)

exp]$ is the string to be searched
exp2$ is the substring you want to search for

This function lets you search through a string to see if it contains
another string. If it does, INSTR returns the starting position of the
substring in the target string; otherwise zero is returned. Note that
the entire substring must be contained in the search string, or zero
is returned. Also note that INSTR only finds the first occurrence of
a substring, starting at the position you specify.

Examples (let A$=" ABCDEFG"):

Expression

INSTR(A$, "BCD")
INSTR(A$,"l 2")
INSTR(A$," ABCDEFGH")
INSTR(3," 123 2123 "," 12")

Result

2
0
0
5

See the EDIT program under MID$= for a sample use of INSTR.

DISK BASIC

7-15

DISK BASIC

LINE INPUT (input a line from keyboard)

LINE INPUT["prompt"] ;var$

where prompt is a prompting message

vart is the name that will be assigned to the line you
type in

LINE INPUT (or LINEINPUT - the space is optional) is similar to
INPUT, except:

• When the statement is executed, and the Computer is waiting for
keyboard input, no question mark is displayed

• Each LINE INPUT statement can assign a value to just one variable
• Commas and quotes will be accepted as part of the string input
• Leading blanks are not ignored - they become part of var$
• The only way to terminate the string input is to press Ij~uj;1

LINE INPUT is a convenient way to input string data without having
to worrv about accidental entry of delimiters - because only the
1=4¢11j;1 key serves as a delimiter. If you want anyone to be able to
input information to a program without special instructions, use
LINE INPUT and then analyze the resultant string.

Some situations require that you input commas, quotes and leading
blanks as part of the data. LINE INPUT serves well in such cases.

Examples:

LI NE INPUT A$
Input A$ without displaying any prompt.

LINE INPIJT"LAST NAME, FIRST NAME?";N$
Displays a prompt message and inputs data. Commas will not termi
nate the input string.

Try the following program to get the idea of LINE INPUT.

7-16

100 PROGRAM: LNINPUT
110 ·' E:X:AMPLE OF LI NE INPUT STATEMENT
120 ,·
130 CLEAR 3:00: CLS
140 PRINT TAB(15); ."LINE INPUT STATEMENT": PRINT
1:,0 PRINT: PRINT "*** ENTER TEXT ***"
151
1~•2 ' *** GE.1 S1RlNG, 1HE.H PRINT IT ***
153: ,.
155 A$="" 'SET A$ TO NULL STRING

DISK BASIC

if.(1 LWEINPUT "=<> ".; Al
16:, IF Al="" THEN El~[) ,,' IF STILL l~ULL STRHiG, STOP 1

171;'.1 PR IHT fi$
1::::1:, GOTO 15':,

f IUN: l@~jj:j;I

LINE INPUT STATEMENT

*** ENTER TEXT***
== > EXF1t1PLE· ·-.-TE~T-··
THI-S TEKT HRS E:MBEbttEO .. LlNE FEEDS. AND TABS
·tij·••······ ••·•··•···· .· .. ··•·/• l'fJ.•••·· ··•••·J.::It•EINPtff Rt.;$Q•A«.;liCtf4$... 0ELU•rf'tR (,i;;,rti.·•••ETC), imm

E)<:AMPLE TE:=-::T
THIS TE)H HAS EME:E[:{)E[:, LnlE FEEDS AND TABS
IN IT. LINEINPL~ ALSO ALLOWS DELIMITER(,:;"' ETC).

READ't'
)_

MID$= (replace portion of string)

MID$(var$,nl [,n2]) = exp$

where var$ names the string to be ciianged
nl specifics the starting position for the

replacement
n2 specifies how many characters are to be

replaced; if n2 is omitted, LEN(exp$) or
LEN(var$)-nl+l is used, whichever is
smaller.

This statement lets you replace any part of a string with a specified
substring, giving you a powerful string-editing capability.

Note that the length of the target string (var$) is never changed by
the MID$= statement. If the replacement string, exp$, is too long
to fit in the specified portion of var$, then the extra characters at
the right of exp$ are ignored.

7-17

DISK BASIC

However, if you specify the number of characters to be replaced,
and this number is larger than the replacement string, then the
length of the replacement string overrides the length you specified.

A$=" ABCDEFG" at the beginning of each example below:

Ex.# Expression Resultant A$

1 MID$(A$,3,4)="12345" AB1234G
2 MID$(A$, 1,2)="" ABCDEFG
3 MID$(A$,5)="12345" ABCD123
4 MID$(A$,5)="0 l" ABCDOlG
5 MID$(A$, 1,3)="* **" ***DEFG

In example 2, the specified replacement length exceeds the length
of the replacement string (which is zero); therefore the replacement
string length is used. In effect, no characters arc replaced.

Sample program: EDIT

This program accepts an initial string, asks for a replacement position
and a replacement string. Then it perfom1s the MID$= replacement
and prints the new string. Type in a position equal to zero to stop
the program.

7-18

10(1 ·' PROGRAM: Hi IT
110 DC:AMPLE OF INSTR FUNCTION FOR TD::T EMTTWG
115
120 CLEAR 800: CLS
13:(1 PRINT TAE:<15).; 11 STF.:ING-FUNCTION E()ITOR 11

13:5
141~1 ·' ******* GET INITIAL TE:>::T *******
145 ,•'

150 PRINT: PRINT "ENTEF.: INITIAL TD::T STRINCi 11

160 5$= 1111
: LINE INPUT 5$: IF 5$= 1111 THEN El·ff:i

165 ,,

17(1 ' ******* GET TARGET t REPLACEMENT STF.:ItK:iS *******
175 .-·

181:.11"$= 1111
: PRINT: LINE INPUT" TARGET STRING "; T$

185 IF T$= 11
" THEN [N()

1% LINE INPUT "REPLACEMENT STRINC:i II; Rf·
195 IF LEt·hl$){)lEN(R$)THEN PRINT"CAtYT CHANGE STRING LENGTH":

GOTO 180
200 .-· ******* MAKE REPLACEMENT(S) AN[) PRINT NEW STRING *****
21(1 1=1 ·'i/ARIAE:LE I POSITIONS TO BEGINNING POINT OF SEARCH
220 I=INSTR(I, 5$, TS): IF 1=0 THEN 150 '1=0 IF NOT FOUN[)
23:0 t1IDS(SS, I)=RS ... MAKE REPLACEMENT
240 PR INT II POSIT I Ot·i - ",; I : PR INT 5$
250 I=l+LEN(R$): GOTO 22(1 ·'A(NANCE POSITION

DISK BASIC

r I
STRING-FUNCTION EDITOR

ENTER INITIAL TEXT STRING
·~····•··•!(YISC'iTCt·.•.·ito.xSK1.t• •• • iACH··•TINe; IT•··· QE.-ctORsc;z.·:<~lst:;)ijf~)

TARGET STF.:ING DlSC iUOiil
REPLACEMENT STF.'.ING C>lSK j*uj;1
POSITION - 9
CHANGE "DISK" TO "[:iISf<" EACH TIME IT OCCURS ... WISC=>DISfO
POSITION - 4E:
CHANGE "[)ISK" TO "DISK" EACH TIME IT OCCURS ... (DISK=)[:,151<)

ENTER INITIAL TD::T STRING j•¢i1•;1

)_

TIME$ (get value of Real-Time Clock)

LTIME$

TIME$ is a function with no arguments - when executed, it returns
a string-value composed of the date and time currently stored in the
Real-Time Clock memory area. The string is always 17 characters
long and has the following format:

MM/DD/YYl,6HH:MM:SS (month/day/year hr:min:sec)

The hour appears in 24-hour fom1, e.g., 1 :30 PM appears as 13:30.

To set the time and date, get into the DOS READY mode and use
the TRSDOS commands, TIME and DA TE, as follows (assume it's
3:30 PM on January 1, 1979):

TIME 15: 30: 00 •*O=ii•
DATE 01/01/79 U~O=h•

Or, you can set the time and date under DISK BASIC, by POKEing
the time and date values into the appropriate addresses (see
CLOCK, TRSDOS Library Commands).

TIME$ can be printed or used internally by your program in dedicated
applications.

7-19

DISK BASIC

Examples:

1000 IF LEFT$(Tll1E$,15)="07/04/79 20:00"THEH 2000
1010 GOTO 1000
2000 REt1 ... IT, S 8PM ON .JUL 'r' 4 TH, 1979
2010 REM ... START FIREWORKS ()!SPLAY

The following program, CLOCK, will display the time and date until
you press the @-key.

1€10 ·' PROGRAM : CLOCK
11€1 ·' EXAMPLE OF TIME$
1213 ,·
130 CLS: PF~INT CHR:t- (23) ·'GET INTO 32 CHARACTER t10[)E
1413 /
150 / ******* PRINT TIME AN[) [)ATE *******
160 ·'
170 PRINT @ 264, "THE TRS-80 TIME
180 PRINT @ 458, "[)ATE: "_; LEFT$
190 PR INT @ 586, "TIME : ",; RIGHT$
200 ·'

1,:: II• _, _.

(TIME$,
<TIME$,

8),;

210 ,· ******* STOP IF "@" KE'r' IS DEPRESSED *******
220 /
2:m A$= I Ul<E'r':t- : IF A$ = "@" THEN END ELSE 180

USRn (call to user's external subroutine)

USR[n 1 (nmexp)

where n specifies one of ten available USR calls,
n=O, 1,2, ... ,9. If n is omitted, zero is
assumed.

nmexp is in the range< -32768 +32767 > and
is passed as an integer argument to the
routine

These functions (USRO through USR9) transfer control to machine
language routines previously defined with DEFUSRn statements.

When a USR call is encountered in a statement, control goes to the
address specified in the DEFUSRn statement. This address specifies
the entry point to your machine-language routine. A RET or JP
OA9 A instruction in the routine returns control to the USR call in
your BASIC program.

7-20

Note: If you call a US Rn routine before defining the routine entry
point with DEFUSRn, an ILLEGAL FUNCTION CALL error will
occur.

You can pass one argument and retrieve one output value directly
via the USR argument; or you can pass and retrieve arguments
indirectly via POKE and PEEK statements.

Example.:

10 [)EFUSR1=&H7D00
2'-:J REM ... MORE F'ROGl-'.AM LINES HERE
100 A=USR100

The effect of this sequence is to:

1) Define USRl as a routine with an entry point at hex 7D00
(line 10)

2) Transfer control to the routine; the value X can be passed
to the routine if the routine makes the CALL described
below (line 100)

3) When the routine returns to BASIC, the variable A may
contain the value passed back from the routine (if your
routine makes the JUMP described below); otherwise A
will be assigned the value of X (line 100).

Passing arguments to and from USR routines

There are several ways to pass arguments back and forth between
your BASIC main program and your USR routines: the two major
ways are listed below.

1. POKE the argument(s) into fixed RAM locations. The
machine-language routine can then access these values and
place results in other RAM locations. When the routine
returns control to BASIC, your program can PEEK into
these addresses to pick up the "output" values. This is
the only way to pass two or more arguments back and
forth.

2. Pass one argument to the routine as the argument in the
USRn call, then use special ROM calls to access this
argument and return a value to BASIC. This method is
limited to sending one argument and returning one value
(both are integers).

DISK BASIC

7-21

DISK BASIC

ROM Calls

CALL OA 7FH Puts the USR argument into the HL register pair;
H contains msb, L contains lsb. This CALL should
be the first instruction in your USR routine.

JP 0A9AH Use this JUMP to return to BASIC; the integer in
HL becomes the output of the USR call. If you
don't care about returning HL, then execute a
simple RETurn instruction instead of this JUMP.

Examples:

Listed below is an assembled machine-language routine that will
accept the argument from the USR call in BASIC, left-shift it one
position, and return the result to BASIC.

7N30

0010€1 ;
(n3110 _: SH I FT FUNCTION
00120 ;
001](1 _;
0014€1 ;
00150 ;
00160 _;
00170
130180 ;
00190 ,;
00200 ;

MACHINE CODE PROGRAM TO LEFT SHIFT
AN ARGUMENT SENT FROM BASIC AND RETURN
THE RESULT BACK TO BASIC

ORG 7[)(10H

EQUATES AND EHTR'r' POINTS

0A7F 00210 GETARG EQU 0A7FH _; GET ARGUMENT FROM BASIC
0A9A 00220 PUTANS EQU 0A9AH ,: RETURN ANSWER TO BASIC

00230 _;
7[.,00 CD7F0A 00240 SHIFT CALL GETARG _; GET Nllt1BEP FROM BASIC
7D03 CB15 00250 RL L ; SHIFT L
7[)05 CB14 00260 RL H ;SHIFT H - ANSWER IN HL
7[)07 CJ:9A0A 00270 JP PUTANS .: RETURN TO BASIC W ANSWER

00280 ;
7D00 00290 EHD SHIFT

The following program includes the decimal code for the SHIFT
routine. The code is POKEd into RAM and then accessed as a USR
routine. RUN the program; to stop, enter a value of zero.

Note: The following two BASIC programs require that you reserve
memory addresses above 31999 for the USR Code. (Answer MEMORY
SIZE? with 31999.)

7-22

DISK BASIC

1(1(1 ·' PROGRAM: SHIFT
11(1 ·' MFICHINE LFINGUFIGE USER FUCTiot-l TO LEFT SHIFT
12(1
1-<1":l ******* MFIC:H I NE COC•E FIT 7[>013 HE:X: *******
14(1 .,

150 DEFUSR:, :::. .~:,H?D(1(1
160
170 / ******* POKE USER PROGRAM I tHO MEMOR'r' *******
180
190 FOR :,: = J:2013€1 TO J:2(109 ·'7[>(1(1 HE:": EQUFIL'.:, 32000 DEC !MAL
200 REfl[:, A
210 POKE :x:., A
220 NE::<T ~~

23:0
24(1 ·' ******* GET VALUE FROl1 USER *******
250 ,,
260 CLS: PRINT TFIB(15); "USR5 LEFT-SHIFT FUNCTION"
27(1 PR INT : INPUT II ENTER INTEGER VALUE II_; V
2:313 IF V=(t THEN END
290 PRINT "LEFT SHIFTED VFILUE = "., TAB(32); USR5(V)
J:130 GOTO 270
310 ,·

3:2(1 ·' ******* [)ATA IS DEl11 CFIL CODE FOR HE:": PROGRAM *******
330 ✓

340 [)ATA 205,127,10,203,21,203,20,195,154,10

USl<:5 LEFT -SH I FT FUNCTION

ENTER INTEGER VALUE? 7 •UHi;•
LEFT SHIFTED VALUE= 14

ENTER INTEGER VALUE? ¥.'$ •*0:(l;J
LEFT SHIFTE[) VALUE = -1::

ENTER INTEGER VALUE? •.• ~.• •Uu:j;j
LEFT SHIFTE[) VFILUE = -2

ENTER INTEGER VALUE? I •U113i1
READY
)_

7-23

DISK BASIC

Listed below is an assembled program to white out the display (an
"inverse" CLEAR key!).

7[>00

J:C00
00BF
C.::13:FF

00100 ;
00110 _; ZAP OUT SCREEN USR FUNCTION
0012(1 _;
130130
0014€1 _;

ORG

00150 _; EQUATES
00160 _;
00170 VIDEO
00180 WHITE
00190 COUNT
00200 _;

EQIJ
EQU
EQU

7[)(10H

3C00H
0BFH
3FFH

_; START OF VIDEO RAM
;ALL WHITE GRAPHICS BYTE
;NUMBER OF BYTES TO MOVE

7[)00 21003(:

00210 _; PROGRAM CHA IN MOVES X /BF/
00220 _;
00230 ZAP LD HL., VIDEO

(HU, WHITE
DE., VIDE0+1
BC,COUNT

INTO ALL OF VIDEO RAM

; SOURE ADDRESS
7D0J: 36BF 00240 LD
7D05 11013C 00250 L[)

7D08 01FF03: 00260 LD
7[)08 EDB0 00270 LDIR

00280 ;
7D0D C9 00290 RET
7[)00 00300 END ZAP

This routine can be POKEd into RAM and accessed as a USR
routine, as follows.

7-24

; PUT OUT 1ST BYTE
; DESTINATION ADDRESS
; NUMBER OF ITERATIONS
; DO IT TO IT ! ! !

; RETURN TO BASIC

DISK BASIC

100 PROGRAM: USR1
111::1 E:X:AMPLE OF A USEF.' MACHINE LANGUAGE FUNCTION
115 ·' [)EF'RE55 THE ·'@·' KE'r' WHILE NUMBERS ARE PRINTING TO STOP
12(1 ·'

13:0 ******* POKE MACHINE PF.:OGRAM nno MEMOR',-' *******
140 ·'
15(1 [)EFUSR1 = tH7t:•00
160 FOR X = J:2000 TO J:2013: ·'7[>00 HE:X: EQUAL 32000 t>EC:IMAL
170 REA[) A
180 POKE K, A
19(1 NEXT)<

192 ·'

194 ·' ******* CLEAR SCREEN .~, PRINT NUMBERS 1 THRU 100 *******
196 ·'
200 CLS
205 PRINT TAB(15); "HHITE-OIJT USER ROUTINE": PRINT
210 FOR :x: = 1 TO 100
220 PR INT X.;
225 Fl$ = IHKE',-'$: IF Fl$ = "@" THEN END
23(1 NE::,n ::-c:

240

250 ·' ******* JUMP TO ~lHITE-OUT SUBf.:OUTINE *******
260 ·'
270 :x: = USR1 (0)
280 FOR X = 1 TO 1000: NEXT X -'[)ELA',-' LOOP
290 GOTO 2(10
:w13.,
310 ., ******* [)ATFI IS [>EMICAL COC:,E FOR HE::< PROGRAM *******
320.,
::3:(1 [)ATA 33:., i;:1_. W., 54, 255, 17., 1., 61:f, 1., 255, J:., 23:7., 176., 21)1

RUN the program. An equivalent BASIC white out routine takes
a long time by comparison!

7-25

DISK BASIC

Disk-Related Features

Programs and data are stored as "files" under TRSDOS.
Each program or data-set on the disk has its own, distinct
file specification - which includes a name plus identifying
information.

Before attempting any disk input/output - including
loading and saving BASIC programs, refer to the TRSDOS
Overview. Also, Review the Notation Conventions
described under General Information. That's the only
way to be sure you understand the statement syntax
descriptions.

DISK BASIC provides a powerful set of commands, statements and
functions relating to disk 1/0 under TRSDOS. These fall into two
categories:

l. File manipulation: dealing with files as units, rather than
with the distinct records the files contain.

2. File access: preparing data files for 1/0; reading and
writing to the files.

Commands discussed under "File Manipulation":

7-26

KILL

LOAD
MERGE

RUN"program"

SAVE

delete a program or data file
from the disk
load a BASIC program from disk
merge an ASCII-format BASIC
program on disk with one
currently in RAM
load and execute a BASIC
program stored on disk
save the resident BASIC program
on disk

Statement and functions discussed under "File Access":

Statements

OPEN

CLOSE
INPUT#
LINE INPUT#

PRINT#
GET

PUT

FIELD

LSET

RSET

Functions

CVD

CVI

CVS

EOF

LOF

MKD$

MKI$

MKS$

Open a file for access (create the
file if necessary)

Close access to the file
Read from disk, sequential mode
Read a line of data, sequential

mode
Write to disk, sequential mode
Read from disk, random access

mode
Write to disk, random access

mode
Assign field sizes and names to

random access file buffer
Place value in specified buffer

field, add blanks on the right
to fill field

Place value in specified buff er
field, add blanks on the left
to fill field

Restore double-precision number
to numeric form after GETting
from disk

Restore integer to numeric form
after GETting from disk

Restore single-precision number
to numeric form after
GETting from disk

Check to see if end of file
encountered during read

Return number of last record in
file

Convert double-precision number
to string so it can be PUT
on disk

Convert integer to string so it can
be PUT on disk

Convert single-precision number
to string so it can be PUT
on disk

DISK BASIC

7-27

DISK BASIC

File Manipulation
KILL (delete a file from the disk)

~xp$

L~here epx$ defines a file specification for an existing file

This command works like the TRSDOS KILL command - see
TRSDOS Library Commands.

Example:
KILL"OLDFILE/BAS. PSW1
deletes the file specified from the first drive which contains it.

Do not KILL an open file, or you may destroy the contents of the
diskette. (First CLOSE the open file.)

LOAD (load BASIC program file from disk)

LOAD exp$ [,R]

where exp$ defines a filespec for a BASIC program file stored
on disk

R tells BASIC to RUN the program after it is
loaded

This command loads a BASIC program file into RAM; if the R
option is used, BASIC will proceed to RUN the program
automatically; otherwise, BASIC will return to the command
mode.

LOAD without the R option wipes out any resident BASIC program,
clears all variables, and closes all open files. LOAD with the R
option deletes the resident program and clears all variables, but does
not close the open files.

LOAD with the R option is equivalent to the command RUN exp$,R.
Either of these commands can be used inside programs to allow
program chaining - one program calling another, etc.

If you attempt to LOAD a non-BASIC file, a DIRECT STATEMENT
IN FILE or LOAD FORMAT ERROR will occur.

7-28

Examples:

LO AD"PROG 1 /BAS: 2" Clears resident BASIC program and
loads PROG 1 /BAS from drive 2;
returns to BASIC command mode.

10 REM ... INSTRUCTIONS Example of chaining two programs
- the first may be used to give
instructions and then to load the
"working" part of the program

1000 LOAD"PROG2/BAS",R (PROG2/BAS). Note that line
1000 is equivalent to:
1000 RUN"PROG2/BAS"

MERGE
(merge disk program with resident program)

MERGE exp$

where exp$ defines a filespec for an ASCII-format BASIC
disk file, e.g., a program saved with the
A-option.

MERGE is similar to LOAD - except that the resident program is
not wiped out before the new program exp$ is loaded. Instead,
exp$ is merged into the resident program.

That is, program lines in exp$ will simply be inserted into the
resident program in sequential order. If line numbers in exp$
coincide with line numbers in the resident program, the resident lines
will be replaced by those from exp$.

DISK BASIC

PROGRAM IN DISK PROGRAM IN RAM MERGED PROGRAM IN RAM

to 10

20 20

30 30

PROGRAM LINE NUMBERS + 40

50 -- 40

50

60 60

70 70

90
100

uo
120

7-29

DISK BASIC

MERGE provides a convenient means of putting modular programs
together. For example, an often-used set of BASIC subroutines can
be tacked onto a variety of programs with this command.

For example, suppose the following program is in RAM:

10 REM ... MAIN PROGRAM
20 GOSUB 1000
30 REM ... MORE PROGRAt1 LI HES HERE
999 ENC>
1000 REM ... NEED TO ADD SUBROUTINES HERE
1010 REM ... 50 USE MERGE COMMAND
1020 PRINT 11 SUBROUTINE NOT AVAILABLE" :RETURN

And suppose the following program is stored on disk in ASCII format:

1000 REM ... BEGINNING OF SUBROUTINE
1010 PRINT 11 EXECUTING SUBROUTINE ... 11

1020 REM ... MORE PROGRAM LINES HERE
1100 RETURN

Assuming the subroutine program is named SUB/TXT, then we
could MERGE it with the statement:

MERGE"SUB/TXT"
and the resultant program in RAM would be:

10 REM ... MAIN PROGRAM
20 GOSUB 1000
30 REM ... MORE PROGRAM LINES HERE
999 END
1000 REM ... BEGINNING OF SUBROUTINE
1010 PRINT"EXECUTING SUBROUTINE ... 11

1020 REM . .. t10RE PROGRAM LI HES HERE
1100 RETURN

Note that MERGE closes all files and clears all variables. Upon
completion, BASIC returns to the command mode.

7-30

RUN"program"

(load and execute a program from disk)

RUN exp$ [,R]

where exp$ defines the filespec for a BASIC program
stored on disk. R leaves open files open

If the R-option is not selected, all open files will be closed.

When the command is executed, any resident BASIC program will
be replaced by the program contained in exp$.

Example:

RUN"DI SK[>IJMP/BAS" '*D*•
Loads and executes the BASIC sector-dump program.

Suppose you save the following program on disk with the name
"PROG 1 /BAS" :

10 PRINT 11 PROG1 EXECUTING ... 11

20 RllN"PROG2/BAS"

And save this program on disk with the name "PROG2/BAS" :

10 PR I NT II PROG2 EXECUTING. . . "
20 RUN 11 PROG1/BAS 11

Now type:
RUN"PROG1/BAS f *11:j;j
and you'll see a simple example of program chaining.
Hold down the BREAK key to interrupt the program chain.

SA VE (save program onto disk)

SAVE exp$ [,A]

where exp$ defines the file-name and optional
extension, password, and drive to be used.
If the file-name already exists, its previous
contents will be lost as the file is re-created.

A causes the file to be stored in ASCII rather
than compressed-format.

This command lets you save your BASIC programs on disk. You can
save the program in compressed or ASCII format.

DISK BASIC

7-31

DISK BASIC

Using compressed-format takes up less disk space and is faster during
both SAVEs and LOADs. This is the way BASIC programs are
stored in RAM.

Using the ASCII option makes it possible to do certain things that
cannot be done with compressed-format BASIC files.

Examples:

•

•

•

The MERGE command requires that the disk file be in
ASCII form.
You can use the TRSDOS commands LIST and PRINT with
ASCII-format files.
Programs which read in other programs as data will typically
require that the data programs be stored in ASCII.

Useful conventions for placing extensions on BASIC programs:
For compressed-format programs, use the extension /BAS.
For ASCII format programs, use the extension /TXT.

Examples of SA VE command:

SAVE"FILE1/BAS. JOHNQ[)OE: 3"
saves the resident BASIC program in compressed-format with the
file name FILEl, extension /BAS, password .JOHNQDOE; the
file is placed on drive : 3.

SAVE"MATHPAK/TXT",A
saves the resident program in ASCII form, using the name
MA THP AK/TXT, on the first non write-protected drive.

Upon completion of a SA VE, BASIC returns in the command mode.

7-32

File Access
This section is divided into four parts:

1) Creating files and assigning buffers - OPEN and CLOSE
2) Statements and functions
3) Sequential 1/0 techniques
4) Random 1/0 techniques.

If this is your first experience with disk file access, you should
concentrate on parts 1, 3 and 4, perhaps just skimming through
part 2 to get a general idea of how the functions and statements
work. Later you can go back to part 2 and learn the details of
statement and function syntax.

Creating fdes and assigning buffers
During the initialization dialog, you type in a number in response to
HOW MANY FILES? The number you type in tells BASIC how
many buffers to create to handle your disk accesses (reads and
writes).

Each buffer is given a number from 1 to 15. If you type:

HOW MANY FILES?·•••~· i3~u4i1
then BASIC sets aside four buffers, numbered I ,2,3 and 4.

You can think of a buffer as a waiting area that data must pass
through on the way to and from the disk file. When you want to
access a particular file, you must tell BASIC which buffer to use
in accessing that file. You must also tell BASIC what kind of
access you want - sequential output, sequential input, or random
input/output.

All this is done with the OPEN statement, and "undone" with the
CLOSE statement.

DISK BASIC

7-33

DISK BASIC

OPEN
(Assign a buffer to a file and set mode)

OPEN expl$,nmexp,exp2$

where exp]$

nmexp

exp2$

is a string expression or constant of which
only the first character is significant; this
character specifies the mode in which the
file is to be opened:

exp]$=

I
0
R

access mode

sequential input
sequential output
random I/0

has a value from 1 to 15, and tells BASIC
which buffer to assign to the file specified
by exp2$
defines a TRSDOS file specification

This statement makes it possible to access a file. exp]$ determines
what kind of access you'll have via the specified buffer; nmexp
determines which buffer will be assigned to the file; and exp2$ names
the file to be accessed. If exp2$ does not exist, then TRSDOS may
or may not create it, depending on the access mode.

Note: nmexp (buffer number) cannot exceed the number you
entered for the FILES? question during initialization. If you
entered:

HOW MANV FILES? ;I} 1*114i1
then nmexp can have the value 1 or 2.

Examples of OPEN statements:

100 OPEN "O",1, "CLIENTLS/TXT"

Opens the file "CLIENTLS/TXT" for sequential output. Buffer 1
will be used. If the file does not exist, it will be created. If it already
exists, then its previous contents are lost. (This is explained under
"Sequential 1/0 Techniques".)

100 OPEN "1",1,"PROG1/TXT:1"

Opens the file "PROG 1 /TXT" on drive 1 for sequential input. Buffer
2 is assigned to the file. If PROG 1 /TXT does not exist on drive 1, an
error message is returned - since you can't input from a non-existent
file!

7-34

100 IHPIJT II MO[>E (I, 0, R) 11
; MODE$

110 INPIJT 11 BLIFFER NLIMBER 11 ;E:IJFFERr•
120 INPUT 11 FILE SPECIFICATION 11

., FILESPEC$
130 OPEN t10C>E$,BIJFFERr.,FILESPEC$

This sequence of statements lets you provide the arguments for the
OPEN statement during program execution. The first character of
MODE$ sets the access mode, BUFFER% determines which buffer
will be used, and FILESPEC$ gives the file specification.

OPEN 11 R11
., 2, 11 [)ATA/BAS. SPECifiL 11

Opens the file DAT A/BAS with password SPECIAL, in the random
1/0 mode, using buffer number 2. If DATA/BAS does not exist,
it will be created on the first non write-protected drive.

While a file is open, it is referenced by the buffer-number which was
assigned to it. Examples:

GET buffer-number
PUT buffer-number
PRINT #buffer-number
INPUT #buffer-number

All these statements will reference the file which was OPENed via
buffer-number. The mode must be correct.

Once a buffer has been assigned to a file with the OPEN statement,
that buff er cannot be used in another OPEN statement. You have
to CLOSE it first.

More on Buffer Assignments

Two or more buffers may be assigned to the same file for sequential
input (I-mode). However, only one buffer at a time may be assigned
to a file for sequential output (0-mode) or random access R-mode.

For example:

10 OPEN II l 11, 1, 11 TEST /TXT : 1 11

20 OPEH II I 11
, 2, "TEST /TXT : 1 11

Now TEST /TXT can be accessed via buffers I and 2 for sequential
input.

DISK BASIC

7-35

DISK BASIC

CLOSE (close access to the file)

CLOSE [nmexp [,nmexp .. .]]

where nmexp has a value from l to 15, and refers to the
file's buffer-number (assigned when the
file was opened). If nmexp is omitted, all
open files will be closed.

This command terminates access to a file through the specified
buffer(s). If nmexp has not been assigned in a previous OPEN
statement, then

CLOSE nmexp

has no effect.

Examples of CLOSE statements:

CLOSE L 2, 8

Terminates the file assignments to buffers 1, 2 and 8. These buffers
can now be assigned to other files with OPEN statements.

CLOSE FIRSTr.+COUNT¼

Terminates the file assignment to the buffer specified by the sum
(FIRST%+ COUNT%).

Do not remove a diskette which contains an open file - first close
the file. This is because the last 256 bytes of data may not have
been written to disk yet. Closing the file will write the data, if it
hasn't already been written.

The following actions and conditions cause all files to be
automatically closed:

7-36

NEW 1=#~04;1
RUN i4~04i1
MERGE filespec •*0@;t
EDITing a file
Adding or deleting program lines
Execution of the CLEAR n statement
Disk Errors

INPUT# (sequential read from disk)

INPUT# nm exp, var [,var . ..]

where nmexp specifies a sequential input file
buffer, nmexp= 1,2, ... ,15

var is the variable name to contain
the data from the file

This statement inputs data from a disk file. The data is input
sequentially. That is, when the file is first opened, a pointer is set
to the beginning of the file. Each time data is input, the pointer
advances. To start over reading from the beginning of the file, you
must close the file-buff er and re-open it.

INPUT# doesn't care how the data was placed on the disk - whether
a single PRINT# statement put it there, or whether it required 10
different PRINT# statements. What matters to INPUT# are the
positions of the terminating characters and the EOF marker.

To INPUT# data successfully from disk, you need to know ahead of
time what the format of the data is. Here is a description of how
INPUT# interprets the various characters it encounters when reading
data.

When inputting data into a variable, BASIC ignores leading blanks;
when the first non-blank character is encountered, BASIC assumes it
has encountered the beginning of the data item.

The data item ends when a termiµating character is encountered or
when a terminating condition occurs. The particular terminating
characters vary, depending on whether BASIC is inputting to a
numeric or string variable.

DISK BASIC

7.37

DISK BASIC

Special Note

Here's an inportant exception to keep in mind in
reading the following material

When <EN> (a carriage return) is proceded by <LF>
(a line feed), the <EN> is not taken as a terminator.
Instead, it becomes a part of the data item (string
variable) or is simply ignored (numeric variable).

(To enter <LF> characters from the keyboard,
press the down arrow. To enter <EN> character,
press IDl~HDIH.)

The exception applies to all cases noted below where
<EN> is said to be a terminator.

Numeric Input

Suppose the data image on disk is

1,Dl.2341,D-331,61,6271,6 <EN>

<EN> denotes a carriage-return character (ASCII code decimal 13).

Then the statement

IHPLIT#1, A, E:, C

or the sequence of statements

IHPUT#1,A: IHPUT#1,B: IHPUT#1,C

will assign the values as follows:

A=l.2345
B=-33
C=27

This works because blanks and < EN > serve as terminators for
input to numeric variables. The blank before 1.2345 is a "leading
blank", therefore it is ignored. The blank after 1.2345 is a
terminator; therefore BASIC starts inputting the second variable at
tne - character, inputs the number -33, and takes the next two
blanks as terminators. The third input begins at the 2 and ends
with the 7.

7-38

String Input

When reading data into a string variable, INPUT ignores all leading
blanks; the first non-blank character is taken as the beginning of the
data item.

If this first character is a double-quote("), then INPUT will evaluate
the data as a quoted string: it will read in all subsequent characters
up to the next double-quote. Commas, blanks, and <EN>
-characters will be included in the stri:1g. The quotes themselves
do not become a part of the string.

If the first character of the string item is not a double-quote, then
INPUT will evaluate the data as an unquoted string: It will read in
all subsequent characters up to the first comma, or < EN> .
If double quotes are encountered, they will be included in the string.

For example, if the data on disk is:

PECOS,\6TEXAS "GOOD MELONS"

Then the statement

INPUT#i, A$,E:$,C$

would assign values as follows:

A$=PECOS
B$=\6TEXAS "GOOD\6MELONS"
C$= null string

If a comma is inserted in foe data image before the first double quote,
C$ will get the value, GOOD MELONS.

These are very simple examples just to give you an idea of how
INPUT works. However, there are many other ways to input data -
different terminators, different target variable types, etc.

Rather than taking a shotgun approach and trying to cover them all,
we'll give a generalized description of how input works and what
the terminating characters and conditions are, and then provide
several examples.

When BASIC encounters a terminating character, it scans ahead to
see how many more terminating characters it can include with the
first terminator. This ensures that BASIC will begin looking for the
next data item at the correct place.

The list below defines the various terminating sets INPUT# will
look for. It will always try to take-in the largest set possible.

DISK BASIC

7-39

DISK BASIC

Numeric-input terminator sets

end of file encountered
255th data character encountered
, (comma)
<EN>
< EN> <LF>
lp[lp ...][
lp[lp .,.][

<EN>]
<EN> <LF>]

Quoted-string terminator sets

end of file encountered
255th data character encountered
" (double quote)
,, [Ip ...][,]
"[Ip ...][<EN>]
" [Ip ...][< EN > < LF >]

Unquoted-string terminator sets

end of file encountered
255th data character encountered

<EN> [<LF>]

Here's a flow chart describing how INPUT# assigns data to a variable:

START

IGNORE IT

7-40

PICKUP THE

TERMINATOR

SET

GET DATA FROM

TEMPORARY

SAVE AREA

NO
PUT IT INTO

TEMPORARY

SAVE AREA

EVALUATE IT
ASSIGN TO

VARIABLE
END

The following table shows how various data images will be read-in by
the statement:

INPLIT#1,A,B,C

Ex.# Image on disk

~123.45~ < EN><LF> ~8.2E4~~7000<EN>

Values assigned

A=l23.45
B=82000
C=7000

2 ~~~3<LF><EN> 4 < EN>s <EN> A12eof A=34

3 1,,2,3,4 <EN>

4 1,3,end-of-file

B=5
C=0

A=l
B=0
C=2

A=l
B=2
C=0 end of file error

In Example 2 above, why does variable C get the value O? When the
input reaches the end of file, it terminates the last data item, which
then contains "Al2". This is evaluated by a routine just like the
BASIC VAL function -which returns a zero since the first character
of "Al 2" is non-numeric.

In Example 3, when INPUT# goes looking for the second data item,
it immediately encounters a terminator (the comma); therefore
variable B is given the value zero.

The following table shows how various data images on disk will be
read by the statement:

INPLIT#1,A$,B$

Ex.# Image on disk

Y>Y>l\"ROBERTS,J."ROBERTS,M.N eof

2 V,H,ROBERTS,J.,I\V,Y>ROBERTS,M.N. <EN>

3 THE WORD "QUO",12345.789 <EN>

Values assigned

A$= ROBERTS,J.
B$=ROBERTS,M.N.

A$=ROBERTS
B$=J.

A$=THE WORD "QUO"
B$=12345.789

DISK BASIC

4 BYTE<LF> <EN> UNIT OF MEMORY eof A$=BYTE<LF > <EN> UNIT OF MEMORY
B$=null (eof error)

7-41

DISK BASIC

In example 3, the first data item is an unquoted string, therefore the
double-quotes are not terminators, and become part of A$.

In example 4, the <EN> is preceded by an < LF >, therefore it
does not terminate the first string; both <LF > and <EN>
are included in A$.

Technical Note: The above discussion ignores the role of the input
buffer in the sequential input process. Actually, DISK BASIC
always reads in 256-byte data records into the buffer, and then sorts
through what's in the buffer to "satisfy" the INPUT# variable list.
That's why

100 IHPUTl1, Ar.
200 INPIJT#1, Br.

do not necessarily require two disk accesses. The 256-byte record
in the buffer can contain enough data for A%, B% and more.

LINE INPUT#
(read a line of text from disk)

LINE INPUT#nmexp,var$

where nmexp specifies a sequential output file buffer,
nmexp=l,2, ... ,15

var$ is the variable name to contain the string
data

Similar to LINE INPUT from keyboard, this statement reads a
"line" of string data into var$. This is useful when you want to
read an ASCII-format BASIC program file as data, or when you want
to read in data without following the usual restrictions regarding
leading characters and terminators.

LINE INPUT (or LlNEINPUT - the space is optional) reads
everything from the first character up to:

l) an <EN> character which is not preceded by< LF >
2) the end-of-file
3) the 255th data character (this 255 character is included

in the string)

Other characters encountered - quotes, commas, leading blanks,
< LF > < EN > pairs - are included in the string.

7-42

For example, if the data looks like:

10 CLEAR 500 <EN>
20 OPEN "I", 1, "PROG" <EN>

then the statement

LI NE IHPUT#1, A$

could be used repetitively to read each program line, one line at a
time.

PRINT# (sequential write to disk file)

PRINT#nmexp,[USING format$;] exp[p exp ...]

where nmexp specifies a sequential output file buffer,
nmexp=l ,2, ... ,15

format$ is a sequence of field specifiers used with
the USING option

p is a delimiter placed between every two
expressions to be PRINTed to disk; either
a semi-colon or comma can be used
(semi-colon is preferable)

exp is the expression to be evaluated and
written to disk

This statement writes data sequentially to the specified file. When
you first open a file for sequential output, a pointer is set to the
beginning of the file, therefore your first PRINT# places data at
the beginning of the file. At the end of each PRINT# operation, the
pointer advances, so the values are written in sequence.

A PRINT# statement creates a disk image similar to what a PRINT
to display creates on the screen. Remember this, and you'll be able
to set up your PRINT# list correctly for access by one or more
INPUT statements.

PRINT# does not compress the data before writing it to disk; it
writes an ASCII-coded image of the data.

DISK BASIC

7-43

DISK BASIC

For example, if A=l23.45

PRINT#i, A

will write a nine-byte character sequence onto disk:

\6123.45\6 <EN>

The punctuation in the PRINT list is very important. Unquoted
commas and semi-colons have the same effect as they do in regular
PRINT to display statements.

For example, if A=2300 and B=l.303, then

PR INT#1, A, B

places the data on disk as

<EN>

The comma between A and B in the PRINT# list causes 10 extra
spaces in the disk file. Generally you wouldn't want to use up
disk space this way, so you should use semi-colons instead of
commas.

PRINT#1, A; B

writes the data as:

2300 1.303 < EN>

PRINT# with numeric data is quite straightforward - just remember
to separate the items with semi-colons.

PRINT# with string data requires more care, primarily because you
have to insert delimiters so the data can be read back correctly. In
particular, you must separate string items with explicit delimiters
if you want to INPUT# them as distinct strings.

For example, suppose:

A$="JOHN Q. DOE" and B$="100-01-001"

Then:

PRINT#1, A$; B$

would produce this image on disk:

7-44

JOHN Q. DOEl00-01-001 <EN>

which could not be INPUT back into two variables.

The statement:

PRINT#1., A$;".,"; B$

would produce:

JOHN Q. DOE, 100-01-001

which could be INPUT# back into two variables.

This method is adequate if the string data contains no delimiters -
commas or< EN> -characters. But if the data does contain
delimiters or leading blanks that you don't want to ignore, then you
must supply explicit quotes to be written along with the data.
For example, suppose A$="DOE, JOHN Q." B$="100-01-001"

If you use

PRINT#1, A$; 11
,

11
; 8$

the disk image will be:

DOE, JOHN Q.,100-01-001 <EN>

When you try to input this with a statement like

INPUT#2,A$,B$

A$ will get the value "DOE", and B$ will get "JOHN Q." - because
of the comma after DOE in the disk image.

To write this data so that it can be input correctly, you must use
the CHR$ function to insert explicit double quotes into the disk
image. Since 34 is the decimal ASCII code for double quotes, use
CHR$(34) as follows:

PRINT#1,CHR$(34);A$;CHR$(34);8$

this produces the disk image

"DOE, JOHN Q."100-01-001 <EN>

which can be read with a simple

INPUT#2,A$,B$

DISK BASIC

7-45

DISK BASIC

Note: You can also use the CHR$ function to insert other delimiters
and control codes into the file, for example:

CHR$(10)
CHR$(13)
CHR$(11) or CHR$(12)

USING Option

< LF > Line Feed
carriage return (<EN >character)
line-printer top-of-form

This option makes it easy to write files in a carefully controlled
format. You could create a report file this way, which then could be
LISTed or PRINTed (TRSDOS commands).

Or you could use this option to control how many characters of a
value are written to disk.

For example, suppose:
A$="LUDWIG"
B$="VAN"
C$=" BEETHOVEN"

Then the statement

PRINT#1, USING"!. ! . r. r."; Fl$; 8$; C:$

would write the data in nickname form:

LY.BEET < EN>

(In this case, we didn't want to add any explicit delimiters.) See the
PRINT USING description in the LEVEL II BASIC Reference
Manual for a complete explanation of the field-specifiers.

Technical Note: The above discussion ignores the role of the
output buffer in the sequential write process. Actually, the data is
first placed into the buff er, and then, as 256-byte records are filled,
the data is written to the disk file. That's why there isn't always a
disk access during execution of each PRINT# statement.

7-46

Random Access Statements

FIELD
(organize a random file-buffer into fields)

FIELD nmexp,nmexpl AS varl $ [,nmexp2 AS var2$.. .]

where nmexp

nmexpl
varl $

nmexp2
var2$

specifies a random access file buffer,
nmexp=l,2, ... ,15
specifies the length of the first field,
defines a variable name for the first field
specifies the length of the second field
defines a variable name for the second field
subsequent nmexp AS var$ pairs define
other fields in the buffer

Before FIELDing a buffer, you must use an OPEN statement to
assign that buffer to a particular disk file (must use random access
mode). Then use the FIELD statement to organize a random file
buffer so that you can pass data from BASIC to disk storage and
vice-versa.

Each random file buffer has 255 bytes which can store data for
transfer from disk storage to BASIC or from BASIC to disk.
However, you need a way to access this buffer from BASIC so
that you can either read the data it contains or place new data
in it. The FIELD statement provides the means of access.

You may use the FIELD statement any number of times to
"re-organize" a file buffer. FIELDing a buffer does not clear
the contents of the buffer; only the means of accessing the buffer
(the field names) are changed. Furthermore, two or more field
names can reference the same area of the buffer.

Examples:

FIELD 1, 255 AS A$

This statement tells BASIC to assign the entire 255-byte buffer to
the string variable A$. If you now print A$, you will see the contents
of the buffer. Of course, this value would be meaningless unless you
have used GET to read a 255-byte record from disk.

Note: All data - both strings and numbers - must be placed into
the buffer in string form. There are three pairs of functions
(MKI$/CVI,MKS$/CVS,MKD$/CVD) for converting numbers to
strings and vice-versa. See "Functions", below.

DISK BASIC

7-47

DISK BASIC

FIELD 3, 16 AS NM$, 25 AS AD$, 10 AS CY$, 2 AS ST$,? AS ZP$

The first 16 bytes of buff er 3 are assigned the buffer name NM$; the
next 25, AD$; the next 10, CY$; the next 2, ST$; and the next
7, ZP$. The remaining 195 bytes of the buffer are not fielded at all.

More on field names

Field names, like NM$,AD$,CY$,ST$ and ZP$, are not string
variables in the ordinary sense. They do not consume the string
space available to BASIC.

Instead, they point to the buffer field which you assigned with the
FIELD statement. That's why you can use:

100 FIELD 1,255 AS A$

without worrying about whether 255 bytes of string space are
available for A$.

If you use a buffer field name on the left side of an ordinary assignment
statement, that name will no longer point to the buff er field; therefore
you won't be able to access that field using the previous field name.

For example,

A$=8$

nullifies the effect of the FIELD statement above (line 100).

During random input, the GET statement places data into the
255-byte buffer, where it can be accessed using the field names
assigned to that buffer. During random output, LSET and RSET
place data into the buffer, so you can then PUT the buffer contents
into a disk file.

Often you'll want to use a dummy variable in a FIELD statement
to "pass over" a portion of the buffer and start fielding it somewhere
in the middle. For example:

FIELD 1,15 AS CLIENT$(1),112 AS HIST$(1)
FIELD 1,128 AS DUMMY$,15 AS CLIENT$(2),112 AS HIST$(2)

In the second FIELD statement, DUMMY$ serves to move the starting
position of CLIENT$(2) to position 129. In this manner, two
identical "subrecords" are defined on buffer number 1. We won't
actually use DUMMY$ to place data into the buffer or retrieve it from
the buffer.

7-48

The buffer now "looks" like this:

CL$
(I)

112

HIST$
(I)

---DUMMY$

I HS

(2) J
CL$

112
HIST$

(2)

Note that only one byte (the 128th byte) is left unused in this field
structure.

GET
(read a record from disk - random access)

GET nmexpl [,nmexp2]

where nmmexpl specifies a random access file buffer,
nmexpJ:1,2, ... ,15

nmexp2 specifies which record to GET in the
file; if omitted, the current record will
be read.

This statement gets a data record from a disk file and places it in the
specified buffer. Before GETting data from a file, you must open
the file and assign a buffer to it. That is, a statement like:

OPEN "R",nmexpl,filespec

is required before the statement:

GET nmexpl,nmexp2

When BASIC encounters the GET statement, it looks at the buffer's
control block, and obtains:

• the information needed to access the file
• the mode in which this buff er was set up (must be R)
• the current record number
• The EOF (end-of-file) record number, i.e., the highest

numbered record in the file
• lots of other information for internal use

BASIC then reads record nmexp2 from the file and places it into the
buffer. If you omit the record number, it will read the current record.

The "current record" is the record whose number is one higher than
that of the last record accessed. The first time you access a file via
a particular buffer, the current record is set equal to 1.

DISK BASIC

7-49

DISK BASIC

For example:

Program statement

1000 OPEN"R",l,"NAME/BAS"

1010 FIELD 1, ...
1020 GET 1
1025 REM ... ACCESS BUFFER
1030 GET 1,30
1035 REM ... ACCESS BUFFER
1040 GET 1,25
1046 REM ... ACCESS BUFFER
1050 GET 1

Effect

Open NAME/BAS for random
access using buffer 1

Structure buffer
GET record 1 into buffer 1

GET record 30 into buffer 1

GET record 25 into buffer 1

GET record 26 into buffer 1

If you attempt to GET a record whose number is higher than that
of the end-of-file record, BASIC will fill the buffer with hex zeroes,
and no error will occur.

To prevent this from occurring, you can use the LOF function to
determine the number of the highest numbered record.

PUT
(write a record to disk - random access)

PUT nmexpl [,nmexp2]

where nmexpl specifies a random access file buffer,
nmexp=l,2, ... ,15

nmexp2 specifies the record number in the file,
nmexp2=1,2, .. , up to 335, depending
on how much space is available on the
disk; if nmexp2 is omitted, the current
record number is assumed.

This statement moves data from a file's buffer into a specified place
in the file. Before PUTing data in a file, you must:

7-50

1) OPEN the file, thereby assigning a buff er and defining the
access mode (must be R);

2) FIELD the buffer, so you can
3) place data into the buffer with LSET and RSET statements.

When BASIC encounters the statement:
PUT nmexp,nmexp2

it does the following:

• Gets the information needed to access the disk file
• Checks the access mode for this buff er (must be R)
• Acquires more disk space for the file if necessary to

accommodate the record indicated by nmexp2
• Copies the buffer contents into the specified record of the

disk file
• Updates the current record number to equal mnexp2+1

The "current record" is the record ·whose number is one higher than
the last record accessed. The first time you access a file via a
particular buffer, the.current record is set equal to l.

If the record number you PUT is higher than the end-of-file record
number, then nmexp2 becomes the new end-of-file record number.

This has an important implication. When you PUT a record whose
number exceeds the EOF record number, space is allocated on the
disk to accommodate the new highest record number plus all
lower-numbered records. For example,

PUT nmexp,336

will always produce a DISK FULL message, since TRSDOS attempts
to find space for all records from 1 to 336 - and 33 5 is the maximum
number of records available on a diskette.

DISK BASIC

7-51

DISK BASIC

Examples (assume a file named SAMPLE/BAS exists and that you
have previously written 10 records to it, so that LOF=l0):

Program statement

1000 OPEN"R", 1,"SAMPLE/BAS"

1010 FIELD 1,
1020 LSET
1030 PUT 1

1035 LSET
l 040 PUT 1,30

1045 LSET
1050 PUT 1,25

1055 LSET
1060 PUT 1

7-52

Effect

Open SAMPLE/BAS for random
address under buff er 1

Prepare buffer
Place data in buffer
Copy buffer contents into

current record (=# l)
Place data in buffer
Acquire disk space for records

2 through 30 and copy
buffer contents into record
30; set LOF=30

Place data in buffer
Copy buffer contents into

record 25
Place data in buffer
Copy buffer contents into

current record (=#26)

LSET and RSET
(place data in a random buff er field)

LSET var$ = exp$ and RSET var$ = exp$

where var$ is a field name

exp$ contains the data to be placed in the buffer
field named by var$

These two statements let you place character-string data into fields
previously set up by a FIELD statement.

For example, suppose NM$ and AD$ have been defined as field
names for a random file buffer. NM$ has a length of 18 characters,
and AD$ has a length of 25 characters.

Now we want to place the following information into the buffer
fields so it can be written to disk:

name:
address:

JIM CRICKET, JR.
2000 EAST PECAN ST.

This is accomplished with the two statements:

LSET NM$= II .J IM CRICKET, .JR. II

LSET AD$= 11 2000 EAST PECAN ST. 11

This puts the data in the buffer as follows:

l JIMlpCRICKET,JR.1))\',1)) I
NM$

j 2000l))EASTl))PECANl))ST.1))1))1))1))1))1)) /

AD$
Note that filler spaces were placed to the right of the data strings
in both cases. If we had used RSET instead of LSET statements, the
filler spaces would have been placed on the left. This is the only
difference between LSET and RSET.

For example:

RSET NM$= 11 JIM CRICKET, JR. 11

RSET AD$= 11 2000 EAST PECAN ST. 11

places data in the fields as follows:

I l))~l))JIMl))CRICKET,JR. I
NM$

, 1))~1))1))1))1))20001))EASTl))PECANlpST. I
AD$

DISK BASIC

7-53

DISK BASIC

If a string item is too large to fit in the specified buffer field, it is
always truncated on the right. That is, the extra characters on the
right are ignored.

CVD~ CVI and CVS
(restore string to numeric form)

CVD(exp$)

where exp$ defines an eight character string; exp$ is
typically the name of a buff er-field
containing a numeric string. If LEN(exp$)<'. 8,
an ILLEGAL FUNCTION CALL error occurs;
if LEN(exp$) >8, only the first eight characters
are used.

CVI(exp$)

where exp$ defines a two-character string; exp$ is
typically the name of a buffer-field
containing a numeric string. If LEN(exp$) < 2,
an ILLEGAL FUNCTION CALL error occurs;
if LEN(exp$) > 2, only the first two characters
are used.

CVS(exp$)

where exp$ defines a four-character string; exp$ is
typically the name of a buffer-field
containing a numeric string. If
LEN(exp$)< 4, an ILLEGAL FUNCTION
CALL error occurs; if LEN(exp$)>4,
only the first four characters are used.

These functions let you restore data to numeric form after it is read
from disk. Typically the data has been read by a GET statement, and
is stored in a random access file buff er.

The functions CVD, CVI, CVS are inverses of MKD$, MKI$, and
MKS$, respectively.

For example, suppose the name GROSSPAY$ references an eight
byte field in a random-access file buffer, and after GETting a record,
GROSSPAY$ contains a MKD$ representation of the number
13123.38.

7-54

Then the statement:

PR I NT CV[> (GROS SPAY$)-TAXES

prints the result of the difference, 13123.38-TAXES. Whereas the
statement:

PR I NT GROSSPA'i-1$-TAXES

will produce a TYPE MISMATCH error, since string values cannot be
used in arithmetic expressions.

Using the same example, the statement

A#=CVD<GROSSPAY$)

assigns the numeric value 13123.38 to the double-precision variable
A#.

EOF (end-of-file detector)

EO F(nrnexp)

where nmexp specifies a file buffer,
nrnexp= 1,2, ... , 15

This function checks to see whether all characters up to the end-of
file marker have been accessed, so you can avoid INPUT PAST END
errors during sequential input.

Assuming nrnexp specifies an open file, then EOF(nrnexp) returns
0 (false) when the EOF record has not yet been read, and -1 (true)
when it has been read.

Examples:

IF EOF(5) THEN PRINT"END OF FILE 11 FILEHM$
IF EOF<HMr.) THEN CLOSE HMr.

DISK BASIC

7-55

DISK BASIC

The following sequence of lines reads numeric data from DAT A/TXT
into the array A(). When the last data character in the file is read,
the EOF test in line 30 "passes", so the program branches out of the
disk access loop, preventing an INPUT PAST END error from
occurring. Also note that the variable I contains the number of
elements input into array A().

5 DIM A(100) ·'ASSUMING THIS IS A SAFE VALUE
10 OPEN 11 111 ,1, "DATA/TXT"
20 1%=0
J:13 IF EOF (1) THEN 70
40 INPUT#1,A(l%)
50 lr.=1½+1
60 GOTO 30
70 REM PROGRAM CONT I HUES HERE AFTER [> I SK I HPUT

LOF (get end-of-file record number)

LOF(nmexp)

where nmexp specifies a random access buffer
nmexp=l,2, ... ,15

This function tells you the number of the last, i.e., highest numbered,
record in a file. It is useful for both sequential and random access.

For example, during random access to a pre-existing file, you often
need a way to know when you've read the last valid record. LOF
provides a way.

Examples:

10 OPEN "R", 1., "UNKNOWN/TXT"
20 FIELD 1,255 AS A$
30 FOR1%=1 TO LOF(1)
40 GET 1,1%
50 PRINT fl$
60 NEXT

In line 30, LOF(1) specifies the highest record number to be accessed.

Note: If you attempt to GET record numbers beyond the end-of-file
record, BASIC simply fills the buffer with hexadecimal zeroes, and
no error is generated.

When you want to add to the end of a file, LOF tells you where to
start adding:

100 1%=LOF(1)+1 -·-HIGHEST EXISTING RECORD
110 PUT 1, I% ? ADD NEXT RECOR[>

7-56

MKD$, MKI$ and MKS$
(convert data, numeric-to-string)

MKD$(nmexp)

where nmexp is evaluated as a double-precision number

MK1$(nmexp)

where nmexp is evaluated as an integer,
-32768< =nmexp<32768; if nmexp exceeds
this range, an ILLEGAL FUNCTION CALL
error occurs; any fractional component in
nmexp is truncated

MKS$(nmexp)

where nmexp is evaluated as a single-precision number

These functions change a number to a "string". Actually the byte
values which make up the number are not changed; only one byte,
the internal data-type specifier, is changed, so that numeric data can
be placed in a string variable. (See LEVEL II Reference Manual,
V ARPTR Function, for details of internal number representation.)

That is:

MKD$ returns an eight-byte string
MKI$ returns a two-byte string
MKS$ returns a four-byte string

Examples:

ASC(MKl$(1%)) equals the lsb of I%, i.e., (1% AND 255)
ASC(RIGHT$(MKI$(1), 1))=the msb of 1%, i.e., INT(l%/256)

LSET AVG$=MKS$(0. I 23)

AVG$ would typically reference a four-byte random buffer field.
Now it contains a representation of the single-precision number
0.123.

DISK BASIC

7-57

DISK BASIC

LSET TALLY$=MKI$(1%)

Field name TALLY$ would now contain a two-byte representation
of the integer 1%.

A$=MK1$(8/l)

A$ becomes a two-byte representation of the integer portion of 8/I.
Any fractional portion is ignored. Note that A$ in this case is a
normal string variable, not a buffer-field name.

Suppose BASEBALL/BAT (a non-standard file extension) has been
opened for random access using buffer 2, and the buffer has been
FIELDed as follows:

field: NM$
length: 16

YRS$ AVG$
2 4

HR$
2

AB$
4

ERN1NG$
4

NM$ is intended to hold a character string; AVG$, AB$ and
ERNING$, converted single-precision values; YR$ and HR$,
converted integers.

Suppose we want to write the following data record:

SLOW LEARNER played 3 8 years ; lifetime batting average .123;
career homeruns, 11; at bats, 32768; ... , earnings-13.75.

Then we'd use the make-string functions as follows:

1000 LSET HM$="5LOW LEARNER"
1010 LSET YRS$=MK1$(J:E:)
1020 LSET AVG$=MK5$ (. 123:)
1030 LSET HR$=MKI$(11)
1040 LSET AB$=MKS$(32768)
1050 LSET ERHIHG$~MK5$(-1J:. 75)

After this sequence, you can write SLOW LEARNER's information
to disk with the PUT statement. When you read it back from disk
with GET, you will need to restore the numeric data from string
to numeric form, using CVI and CVS functions.

7-58

Sequential Access Techniques
Sequential input/output is the simplest way to store data in disk
files and retrieve it into BASIC variables.

To write to disk, you open a file for sequential output, PRINT# the
data, and close the file. To read the data back, you simply open
the file for sequential access and INPUT# the data directly into
BASIC variables - in the same order as the data was written onto
the disk.

Sequential Output - An Example
Suppose we want to store a table of English-to-metric conversion
constants:

English unit

1 inch
1 mile
1 acre
1 cubic inch
1 U.S. gallon
1 liquid quart
1 lb (avoir)

Metric equivalent

2.54001 centimeters
1.60935 kilometers
4046.86 sq. meters
0.01638716 liter
3.785 liters
0.9463 liter
0.453 59 kilogram

First we decide what the data image is going to be. Let's say we want
it to look like this:

english unit->metric unit, factor <EN>

For example, the stored data would start out:

IN->CM,~2.54001~ <EN>

The following program will create such a data file.

Note: <EN> represents a carriage return, hex OD.

DISK BASIC

7-59

DISK BASIC

10 OPEN"0",1, "METRIC/TXT"
20 FORir.=1 TO 7
30 READ UNIT$,FACTR
40 PRINT#i, UNIT$; 11

,
11

.i FACTR
50 NEXT
60 CLOSE
70 DATA IN-:>CM,2.54001,MI->KM,1.60935,ACRE-)SQ.M,4046. 86
80 DATA CU. IN->LTR,1. 638716E-2,GAL->LTR,3. 785
90 DATA LIQ.QT->LTR,0. 9463,LB->KG,0.45359

Line 10 creates a disk file named METRIC/TXT, and assigns buffer 1
for sequential output to that file. The extension /TXT is used because
sequential output always stores the data as ASCII-coded text.

Note: If METRIC/TXT already exists, line 10 will cause all its data
to be lost. Here's why: Whenever a file is opened for sequential
output, the EOF marker is set to the beginning of the file. In effect,
TRSDOS "forgets" that anything has ever been written beyond
this point.

Line 40 prints the current contents of UNIT$ and F ACTR to the file
buffer. The disk-write won't actually take place until the buffer is
filled or you close the file, whichever happens first. Since the string
items do not contain delimiters, it is not necessary to print explicit
quotes around them. The explicit comma is sufficient.

Line 60 closes the file. The EOF marker points to the end of the last
data item, i.e., 0.45359, so that later, during input, DISK BASIC will
know when it has read all the data.

7-60

DISK BASIC

Sequential Input - An Example

The following program reads the data from METRIC/TXT into two
"parallel" arrays, then asks you to enter a conversion problem.

5 CLEAR 500
10 DIM LINITS$(9), FACTR(9) ·'ALLOWS FOR LIP TO 10 DATA PAIRS
20 OPEN" I", 1, "METRIC/TXT"
25 IX=0
30 IF EOF(1) THEN 70
40 INPLIT#1, UNIT$(1%), FACTR< 1%)
50 1%=1%+1
60 GOTO 3:0
70 REM ... THE CONVERSION FACTORS HAVE BEEN REA[> IN
100 CLS: PRINT TAB(5)"*** ENGLISH TO METRIC CONVERSIONS***"
110 FOR ITEM%=0TOI%-1
120 PRINT USING"(##) % r: 11

_; ITEM%, UNIT$(ITEM%)
130 NEXT
140 PRINT@704, "WHICH CONVERSION ";
150 INPUT CHOICE%
155 PRIHT@768, "ENTER ENGLISH QUANTITY";
160 INPUT V
170 PRINT"THE METRIC EQUIVALENT IS"V*FACTR<CHOICE%)
180 INPUT" PRESS ENTER TO CONTI HUE"; X
190 PRINT@704, CHR$G1); ·'CLEAR TO END OF FRAME
200 GOTO 140

Line 20 opens the file for sequential input. The read pointer is
automatically set to the beginning of the file.

Line 30 checks to see that the end-of-file record hasn't been read.
lf it has, control branches from the disk input loop to the part of the
program that uses the newly acquired data.

Line 40 reads a value into the string array UNIT$(), and a number into
the single-precision array F ACTR(). Note that this INPUT list
parallels the PRINT# list that created the data file (see the section
"Sequential Output: An example"). This parallelism is not required,
however. We could just as successfully have used:

40 INPUT#i, UNIT$(1%): IHPUT#1, FACTR(1%)

7-61

DISK BASIC

How to update a file
Suppose you want to add more entries into the English-Metric
conversion file. You can't simply re-open the file for sequential
output and PRINT# the extra data - that would immediately set
the end-of-file marker to the beginning of the file, effectively
destroying the file's previous contents. Do this instead:

1) Open the file for sequential input
2) Input the entire file and store it

(typically in one or more arrays)
3) Close the file
4) Add your new entries to the data array, or correct

existing entries
5) Re-open the file for sequential output
6) Output the updated data array to the file
7) Close the file

If the file is too large to fit in memory, update it this way:

7-62

1) Open the file for sequential input
2) Open another new data file for sequential output
3) Input a block of data and update the data as necessary
4) Output the data to the new file
5) Repeat steps 3 and 4 until all data has been read,

updated, and output to the new file; then go to
step 6

6) Close both files
7) Kill the old data file
8) Rename the new file (TRSDOS RENAME command)

to the name of the old file.

DISK BASIC

Sequential LINE INPUT - An Example

Using the line-oriented input, you can write programs that edit other
BASIC program files : renumber them, change LPRINTs to PRINTs,
etc. - as long as these "target" programs are stored in ASCII format.

The following program counts the number of lines in any disk file
with the extension "/TXT".

10 CLEAR 300
20 INPUT "WHAT IS THE NAME OF THE PROGRAW'; PROG$
30 IF INSTR(PROG$, "/TXT")=0 THEN 110 "REQUIRE /TXT EXTENSION
40 OPEN"l",1,PROG$
50 Ir.=0
60 IF EOF(1)THEN 90
70 Ir.=Ir.+1: LINE INPUT#1, TEMP$
80 GOT060
90 PRINT"THE PROGRAM IS" lr."LINES LONG. 11

100 CLOSE: GOTO20
110 PR INT "FI LE SPEC MUST INCLUDE THE EXT ENS I ON ,. /TXT,. 11

120 GOTO20

For BASIC programs stored in ASCII, each program line ends with
an < EN > character not preceded by an < LF > line feed.
So the LINE INPUT in line 70 automatically reads one entire line at
a time, into the variable TEMP$. Variable 1% actually does the
counting.

To try out the program, save DISKDUMP/BAS as a text file:

LOAD"DISKDUMP/BAS" •*ill;•
SAVE"DISKDUMP/TXT", A •*04;•

This gives you a second, ASCII-format version of DISKDUMP.

Now type in the line-counter program and tell it to examine the
program DISKDUMP/TXT.

7-63

DISK BASIC

Disk Storage during Sequential Access

One thing that makes sequential access so simple is that you can
generally ignore the details of disk storage. You just write your data
and read it back.

Described below are a few of the technical details and hints you
should keep in the back of your mind. In some situations, they will
become important.

1. PRINT# statements don't write data directly to the disk;
instead, the data is placed in the 256-byte output buffer.
When this buffer is filled, the contents are automatically
written to disk. (Closing the file will also write the buffer
to disk.)

2. If a DISK FULL ERROR occurs during execution of a PRINT#
statement, you should realize that the current contents of the
output buffer have not been written to the file. The data in

7-64

the disk file is intact, but it doesn't contain the last few values
you PRINTed to it.

If your variables still contain the data, you can recover it
directly.

Random Access Techniques
Random access offers several advantages over sequential access:

• Instead of having to start reading at the beginning of a file,
you can read any record you specify.

• To update a file, you don't have to read in the entire file,
update the data, and write it out again. You can rewrite or
add to any record you choose, without having to go through
any of the other records.

• Random access is more efficient - data takes up less space and
is read and written faster.

• Opening a file for random access allows you to write to and
read from the file via the same buff er.

• Random access provides many powerful statements and
functions to structure your data. Once you have set up the
structure, random input/output becomes quite simple.

The last advantage listed above is also the "hard part" of random
access. It takes a little extra thought.

For the purposes of random access, you can think of a disk file as a
set of boxes - like a wall of post-office boxes. Just like the post
office receptacles, the file boxes are numbered.

The number of boxes in a file will vary, but it's always a multiple
of 5.

The smallest non-empty file contains 5 boxes, numbered 1 through
5. When the file needs more space to hold more data, TRSDOS
provides it in increments of 5.

These fixed-sized boxes are referred to as "records". Each record
contains 256 bytes, 25 5 of which are available for storing your data.

You can place data in any record, or read the contents of any
record, with statements like:

PUT 1,5
GET 1., 5

write buffer-1 contents to record 5
read the contents of record 5 into buffer-1

DISK BASIC

7-65

DISK BASIC

~~ r I I I I I

(256) (2116) (256) (256) (256)
BYTES BYTES BYTES BYTES BYTES

RECORDS IN DISK FILE 1/0 BUFFERS IN RAM

The buffer is a waiting area for the data. Before writing data to a file,
you must place it in the buffer assigned to the file. After reading
data from a file, you must retrieve it from the buffer.

As you can see from the sample PUT and GET statements above, data
is passed to and from the disk in 256-byte chunks.

"That's a lot of data." But most values occupy only a few bytes:

Integers
Single-precision numbers
Double precision numbers
Strings

2
4
8
Up to 255

Therefore you'll want to place several values into the buffer before
PUTting its contents into the disk file, to avoid wasting disk space.

This is accomplished by I) dividing the buffer up into fields and
naming them, then 2) placing the string or numeric data into the
fields.

For example, suppose we want to store a glossary on disk. Each
record will consist of a word followed by its definition. We start
with:

100 OPEN"R",1, "GLOSSARY/BAS"
110 FIELD 1,15 AS WD$,240 AS MEANING$

Line 100 opens a file named GLOSSARY/BAS (creates it ifit doesn't
already exist); and gives buffer I random access to the file.

Line 110 defines two fields onto buffer 1:
WD$ consists of the first 15 bytes of the buffer;
MEANING$ consists of the last 240 bytes.

WD$ and MEANING$ are now field-names.

7-66

DISK BASIC

What makes field names different? Most string variables point to an
area in memory called the string space. This is where the value of
the string is stored.

Field names, on the other hand, point to the buffer area assigned
in the FIELD statement. So, for example, the statement:

10 PR INT 1,.1()$ 11
: " t1EAN ING$

displays the contents of the two buffer fields defined above.

These values are meaningless unless we first place data in the buffer.
LSET, RSET and GET can all be used to accomplish this function.
We'll start with LSET and RSET, which are used in preparation
for disk output.

Our first entry is the word "left-justify" followed by its definition.

100 OPEN"R"., 1., "GLOSSARY/BAS"
110 FI ELD 1, 15 AS WD$., 240 AS MEAN ING$
120 LSET WD$="LEFT-JUSTIFY"
130 LSET MEANING$= 11 TO PLACE A VALUE IN A FIELD FROM LEFT
TO RIGHT.i IF THE DATA DOESWT FILL THE FIELD, BLANKS ARE ADDED
ON THE RIGHT; IF THE DATA IS TOO LONG, THE EXTRA CHARACTERS ON
THE RIGHT ARE IGNORED. LSET IS A LEFT-.JUSTIF'r' FUNCTION. "

Line 120 left-justifies the value in quotes into the first field in buffer
1. Line 130 does the same thing to its quoted string. When typing
in line 130, you should insert line-feed < LF > characters (press the
down arrow) to force line breaks as above. This makes it easier
to print out the data after reading it back in to a string variable.

Note: RSET would place filler-blanks to the left of the item.
Truncation would still be on the right.

Now that the data is in the buffer, we can write it to disk with a
simple PUT statement:

140 PUT 1,1
150 CLOSE

This writes the first record into the file GLOSSARY /BAS.

To read and print the first record in GLOSSARY /BAS, use the
following sequence:

160 OPEN"R",1, "GLOSSARY/BAS"
170 FIELD 1, 15 AS WD$., 240 AS MEANING$
180 GET 1,1
190 PRINT WD$ ": 11 MEANING$
200 CLOSE

Lines 160 and 170 are required only because we closed the file in
line 150. If we hadn't closed it, we could go directly to line 180.

7-67

DISK BASIC

Random Access: A general procedure
The above example shows the necessary sequences to read and
write using random access. But it does not demonstrate the primary
advantages of this form of access - in particular, it doesn't show
how to update existing files by going directly to the desired record.

The program below, G LOSSACC/BAS, develops the glossary example
to show some of the techniques of random access for file maintenance.
But before looking at the program, study this general procedure for
creating and maintaining files via random access.

Step Number

1. OPEN the file
2. FIELD the buffer
3. GET the record to be updated
4. Display current contents of

the record (use CVD,CVI,CVS
before displaying numeric data)

5. LSET and RSET new values into
the fields (use MKD$,MKl$,MKS$
with numeric data before setting
it into the buffer)

6. PUT the updated record
7. To update another record, continue

at step 3. Otherwise, go to step 8.
8. Close the file

7-68

See GLOSSACC/BAS, Line Number

110
120
140
145-170

210-230

240
250-260

270

DISK BASIC

10 REM ... GLOSSACC/BAS ...
100 CLS: CLEAR 3:00
110 OPEN"R"., 1, "GLOSSAR'l'/BAS"
120 FIELD 1, 25 FIS ~JD$., 228 AS MEANING$, 2 RS N>:::t
B0 INPUT"WHAT RECORD [)O 'l'OU ~~ANT TO ACCESS"; R%
140 GET 1, R;~
145 NXX=CVI(NX$) ···SAVE LINK TO NEXT ALPHABETICAL ENTR'l'
150 PR IHT "~ll)R[) : "1,.1()$

160 PRHH 11 ()EF···N:": PRINTMEANING$
170 PRINT 11 NE><:T ALPHABETICAL ENTR'l': RECOR[)#"NX%: PRINT
1E:0 W$= 11

" : INPUT II T'l'PE NEW WORO-CEN) OR (EN) IF 01< 11
_; I,.($

190 ()$= 1111 :PRINT"TYPE NHJ [)EF'.N<Et{> OR (HD· IF OK?" :LINEINPUTD$
200 I NPIJT "'T'l'PE Nm SEQUENCE NUMBER OR (EN) IF OK 11

; ux;.:
210 IF W$()" 11 THEN LSET l,J[)$=~•!$
220 IF D$0" "THEN LSET MERNINCi$=D:t-
2J:0 LSET NX$=MK I$ (N>i:%)
240 PUT 1, RX
245 Ri~=N>:;;{ ·'USE NE:X:T ALPHA. LINK RS [iEFR/JLT FOR t-lD::T f.:ECOF::O
250 CLS: INPUT II TYPE <EN> TO REA[> NEXT RLPHR. ENTRY,

OR RECOR[) # <EN> FOR SPECIFIC ENTR'l',
Of<: 0 <Et-[> TO GM IT"_; R%

2613 IF 0(R% THEN 140
270 CLOSE
280 END

Notice we've added a field, NX$, to the record (line 120). NX$ will
contain the number of the record which comes next in alphabetical
sequence. This enables us to proceed alphabetically through the
glossary, provided we know which record contains the entry which
should come first.

For example, suppose the glossary contains:

record# word (WO$) defn,

1 LEFT-JUSTIFY
2 BYTE
3 RIGHT-JUSTIFY
4 HEXADECIMAL

pointer to next
alpha. entry (NX$)

3
4
0
1

When we read record 2 (BYTE), it tells us that record 4
(HEXADECIMAL) is next, which then tells us record 1 (LEFT
JUSTIFY) is next, etc. The last entry, record 3 (RIGHT-JUSTIFY),
points us to zero, which we take to mean "THE END".

Since NX$ will contain an integer, we have to first convert that
number to a two-byte string representation, using MKI$ (line 230
above).

7-69

DISK BASIC

f

7-70

'
~JHAT RECl)f.'.() ()0 'l'OU WANT TO ACCESS? 4 •Uiili•
WORD : HEX WEC IMAL
DEF'.N:
CAPABLE OF E:>::ISTING IN AN'-r' OF 16 STATES, E. C:i., THE HEXA[)ECIMAL
DIGITS 0, 1., 2, ... , 9, A., B, C., D, E., F. HEXADECIMAL NUMBERS ARE ST!HNGS
OF HErJ1DEC I MAL [) I GI TS.

NE:x:T ALPHABETICAL ENTR'-r': RECORD# 1

TYPE r~rn ~JORD<EN> oR <EN> IF OP HEXADECIMAL •U•Hii
T'T'PE NE~! [)EF'"N<EI{> OR (EN) IF OP •MO=iii

TYPE NH! SEG!UENCE NUMBER OR (HI) IF OK? •*ii#hi

T't'PE<EN) TO READ NEXT ALPHA. ENTR'-r',
OR RECORD # (EN) FOR SPECIFIC ENTR'-r',
OR 13 <EN> TO (!UIT? •*0:i;t

l~ORD: LEFT-.JUSTIF 1
1'

DEF···N:
TO PLACE DATA IN A FI El[) FROt1 LEFT TO RIGHT, ADD ING BLANKS AS
NECESSAR'-r' ON THE RIGHT TO FILL THE FIELD. ANY rnTRA CHARACTERS
ON THE RIGHT ARE IGNORE[).

NEXT ALPHABETICAL ENTR'-r': RECORD# J:

T't'PE NHJ ~KIRD<EN> OR (EN) IF OK? l*ii•i1
T't'PE NEW DEF···wrn> OR (EN) IF OK? '*•H;i

TYPE NEW SEQUENCE NUMBER OR (EN) IF OK? 2 •*O#hi

The following program displays the glossary in alphabetical sequence:

300 REM ... GLOSSOUT/BAS ...
310 CLS: CLEAR 300
320 OPEN"R",1, "GLOSSARY/BAS"
330 FIELD 1,15 AS WDi,238 AS MEANING$,2 AS NX$
340 INPUT"WHICH RECORD IS FIRST ALPHABETICALLY";N%
350 GET 1, N:I.
360 PRINT: PRINTWD$
370 PRINTMEANING$
380 N%=CVI<NX$)
390 INPUT"PRESS ENTER TO CONTINUE"; X
400 IF N%00 THEN 350
410 CLOSE
420 EN(>

Sub-Records
In the glossary example, each entry required the full 255 bytes available
in the buffer. Often this is not the case. When each information-unit
fills only a part of the buffer, it is a good idea to define several
identical sub-records on the buffer. That way you don't waste disk
space by PUTting records which contain only a few bytes of useful
information.

For example, suppose we want to store a mailing list, and each entry
will consist of:

field
name
address
city
state
last purchase amt.

Total length of entry: 63

field length
18
25
14

2
4

Note: The last-purchase-amount will be a single-precision number.
Such values require 4 bytes, therefore the field length is 4.

If we didn't care about wasting space on the disk, we could use the
following statement:

FIELD 1, 18 AS NM$,25 AS AD$,14 AS CTY$,2 AS ST$,4 AS LP$

PUTting such a buff er would create a record consisting of 63 bytes of
information followed by 255-63= 192 unused bytes.

DISK BASIC

7-71

DISK BASIC

A more efficient approach fields the buffer into identical sub-records.
In this case, we can create 255/63 = 4 sub-records plus only 3 wasted
bytes at the end.

Instead of using a very long FIELD statement to explicitly assign each
field, we re-field the buffer once for each sub-record, using a dummy
string, ST ARTHERE$, to start each sub-record at the appropriate
position in the buffer.

FOR I r:=0 TO J:
FI ELD 1, (J:',;*63:) AS 5Tf1RTHERE$, 18 AS NM$ (I%),
25 AS f1DSCI%),14 AS CTY$(1%),2 AS ST$(l%),4 AS LP$(!%)

NEXT

The first time through the loop, ST AR THERE$ will have a length of
zero. Therefore NM$(0) will start at the first byte; AD$(0), at the
19th byte, etc.; LP$(0) will end at the 63rd byte.

The second time through the loop, ST ARTHERE$ will have a length
of 63. Therefore NM$(1) will start at the 64th byte; AD$(!), at the
92nd byte, etc.; LPS(1) will end at the 126th byte.

And so forth, until the buffer is completely defined.

To place values in the subrecords of the buffer: assume our mailing
list entries are stored in four arrays, N$(),A$(),C$(),S$(),LP().

Then we can fill the buffer with four entries as follows:

7-72

FOR I ;,:=0TCG
LSET HM$(1%)=N$(1%)
LSET AD$(1r.)=A$(1r.)
LSET CT$(1%)=C$Clr.)
LSET ST$(lr.)=5$(1r.)
LSET LPS(lr.)=MKS$CLPC1%))

NEXT

How to Access Sub-Records
Since each record in such a file will contain four sub-records, we
need a way to pull out the sub-record we want. This requires that
each sub-record have a unique number which can be related to the
record which contains it.

For this example, suppose we have a printout of the entire mailing
list, starting from the first sub-record in record 1 and going through
to the last sub-record in the last record. We then number them
seq uen ti ally, starting with 1.

The following formulas use this number (we'll call it a key-number)
to determine exactly where the sub-record is in the file:

If the sub-record's key-number is KEY%, then

PR%= INT((KEY%- l)/4)+ 1

where PR% is the physical record that contains the sub-record, and

SR%= KEY%-4*(PR%-1)

where SR% is the sub-record number inside the physical record. For
example, suppose we want to access the entry with key number= 37
(i.e., the 37th entry). Then the physical record which contains it is:

INT((37-1)/4)+1 ==>record 10

And its position in record 10 is:

37 - 4*(10-1)+1 == > sub-record number 1

DISK BASIC

7-73

DISK BASIC

A full working program for creating and manipulating a mailing list
follows:

100 CLEAR 1000
110 OPEN"R",1, "MAIL/BAS"
120 CLS: INPIJT"TYPE 1<EN> TO WRITE, 2<EN> TO READ,

0(EN) TO QUIT".: N%
130 IF Nr.=0 THEN CLOSE: EU()
140 INPIJT"TYPE KE't' NIJMBER(EN) OR 0(EN)"_; KEYr.
150 IF KEY%=0 THEN 120
160 PR%=INT< (KE't':....:-1)/4)+1
170 SR%=KEY%-4>t=(PR%-1)
180 FIELD 1, ((SRr.-1)*63) AS STARTHERE$, 18 AS NM$, 25 AS A[>$,

14 AS CT't'$, 2 AS ST$, 4 AS LP$
190 GET 1,PRX
200 IF Nr:=2THEN300
210 Pl?INT"WRITING SIJBRECORD #"SR%" IN PHYSICAL RECORD #"PR%
220 PRINT: PRINT"NAME?"TAB(20); : LINEINPIJT N$: LSET NM$=N$
230 PRINT"ADC->RESS?"TAB(20).: : LINEINPIJT A$: LSET A[l$=A$
240 PRINT"CIT't'?"TAB<20); : LINEINPIJT C$: LSET CT't'$=C$
250 PRINT"STATE?"TAB<20); : LINE INPUT 5$: LSET ST$=S$
260 PRINT"LAST PURCHASE"TAB(20);: INPUTLP:LSEKS$(LP)
270 PIJT 1,PR%: PRINT: INPIJT"PRESS (EN) TO GO ON";X: GOTO 120
3:00 PRINT"READING SUBRECORD #"SR%" IN PH't'SICAL RECOR[> #"PR:....:
310 PRINT: PRINT"NAME"TAB(20)NM$
320 PR IIH "ADDRESS" TAB (20) AD$
:230 PRHH"CITY"TAB(20)CT't'$
340 PRIIH"STATE"TAB(20)ST$
350 PRINT USING"LAST PURCHASE $####. ##",; CVS(LP$)
J:60 PR I NT : INPUT" PRESS (EN) TO GO ON"; X : GOT0120

This program actually doesn't require you to fill the buffer with four
meaningful sub-records. As soon as you've placed a sub-record in the
correct position in the field, the entire buffer is written to disk.
However, the extra space is not wasted; it is always available for
subsequent sub-records to be added.

Note that this would not be the most efficient way to create a list at
one "sitting". In such a case you'd probably want to fill the buffer
with four sub-records before doing the disk-write. The above program
does, however, show you how to update a file using random access.

7-74

T'r'PE 1<EH:> TO WRITE, 2<EID TO REA[),
0(EH) TO QUIT? t •U•H;i

TYPE KEY HUMBER<EH:> OR 0<EH>? 3" IUOlii
WRITING SUBRECOR[) # 3 IN PHYSICAL RECO~:[) # i

NAME?
A[)[)RESS?
CITY?
STATE?
LAST PURCHASE

~, l . .C, •~~ii*•
2222 SECQNO STREETUaU;i
()Lt> PORT i=I ~ 0 =Iii
azHaH;•
? Jt2~.::s1·-; •~~114;1

PRESS <EH> TO GO ON? l\:rn•H;i

TYPE 1<EH) TO WI<'.! TE, 2(EN) TO READ,
0<EN) TO QUIT? 21*11:l;t

T'r'PE KEY NUMBER<EH> OR 0<EN)? ;t, l*114i1
READING SUBRECORD # 1 IN PHYSICAL RECORD# 1

NAME
ADDRESS
CITY
STATE
LAST PURCHASE

JOHNSON, J. R.
1024 RAM DRIVE
FORT ~llJMPIJS
Tr~
$ 188. 75

PRESS <EN) TO GO ON? •*114;1

TYPE l<EN) TO WRlTE, 2{EN) TO READ,
0(EH) TO QUIT? I IUOli•

REA[)Y
)_

DISK BASIC

7-75

DISK BASIC

Overlapping Fields

Suppose you want to access a field in two ways - in total and in
part. Then you can assign two field names to the same area of the
buffer.

For example, if the first two digits of a six-digit stock-number specify
a category, you might use the following field structure:

FIELD 1, 6 AS STOCK$,
FIELD 1, 2 AS CTG$,

Now STOCK$ will reference the entire stock-number field, while
CTG$ will reference only the first two digits of the number.

7-76

DISK BASIC

DISK BASIC Error Messages

Code Message Explanation

50 FIELD OVERFLOW More than 255 bytes were
allocated to a random-access
buffer.

51 INTERNAL ERROR Error in disk operating system
itself, or disk 1/0 fault.

52 BAD FILE NUMBER A file-buffer number was used
improperly; number has not
been assigned to a file with an
OPEN statement.

53 FILE NOT FOUND Attempt to read from a file
which is not contained on the
disk; check name/extension
to see they were specified
correctly.

54 BAD FILE MODE Attempt to perform disk
file input or output which
conflicts with the mode in
which the file was opened.

57 DISK I/0 ERROR An error occurred during
data transfer between the
Computer and a disk file.

61 DISK FULL All available space on the
diskette has been used.

62 INPUT PAST END During sequential input to a
variable, the end of file was
reached before any data
characters were read.

63 BAD RECORD NUMBER Record number in a PUT
statement exceeded the
range <1,340 >.

64 BAD FILENAME An invalid file specification
was provided; study "File
Specification", TRSDOS
Overview.

Note: Disk errors cannot be simulated via the ERROR statement

7-77

DISK BASIC

Code Message Explanation

66 DIRECT STATEMENT IN FILE Attempt to LOAD, RUN, or
MERGE a disk file which is
not a BASIC program.

67 TOO MANY FILES Attempt to place more than
48 files on a single diskette.

68 DISK WRITE-PROTECTED Attempt to write to disk
with write-protect notch
covered.

69 FILE ACCESS DENIED Attempt to access existing
file with incorrec.t password.

7-78

Appendices

Contents of This Section

Glossary ... 2
Memory Map . 3
TRSDOS Character Tables 14
Base Conversions 18

Section 8 - Page 1

A p
p
E
N
D
I
C
E
s

Appendices

Glossary
access

The method in which information is read from or written to disk;
see random access and sequential access.

address

A location in memory, usually specified as a two-byte hexadecimal
number. The address range<O to FFFF>is represented in decimal
as<O to 32767 > <-32768, ... , -1 >

alphabetic

Referring strictly to the letters A-Z.

alphanumeric

Referring to the set of letters A-Z and the numerals 0-9.

argument

The string or numeric quantity which is supplied to a function and
is then operated on to derive a result; this result is referred to as
the value of the function.

array

An organized set of elements which can be referenced in total or
individually, using the array name and one or more subscripts.
In BASIC, any variable name can be used to name an array; and
arrays can have one or more dimensions. AR() signifies a
one-dimensional array named AR; AR(,) signifies a
two-dimensional array named AR; etc.

ASCII

American Standard Code for Information Interchange. This method
of coding is used to store textual data. Numeric data is typically
stored in a more compressed format.

ASCII format disk file

Disk files in which each byte corresponds to one character of the
original data. For example, a BASIC program stored in ASCII format
"looks like" the program listing, except that each character is
ASCII-coded. Compare to compressed-format file.

background task

A relatively slow routine which the computer executes along with
other background tasks, and which is subject to interrupts. When
the interrupt-driven tasks are completed, the background task
continues. See foreground task, task.

8-2

backup disk

An exact copy of the original: a "safe copy". You should keep
backups of your original TRSDOS diskette and all important data
diskettes.

BASIC

Beginners' All-purpose Symbolic Instruction Code, the programming
language which is stored in ROM in the TRS-80. Radio Shack
supports LEVEL I BASIC, LEVEL II BASIC, and DISK BASIC.
LEVEL II is a subset of DISK BASIC.

baud

Signalling speed in bits per second. The LEVEL II cassette interface
operates at 500 baud.

binary

Having two possible states, e.g., the binary digits O and 1. The
binary (base 2) numbering system uses sequences of zeroes and ones
to represent quantities. This is analagous to the Computer's internal
representation of date, using electrical values for O and I .

bit

Binary digit; the smallest unit of memory in the Computer, capable
of representing the values O and 1.

bootstrap program

A fundamental or primitive program which takes the Computer from
an OFF condition to one in which it is capable of loading and
executing a higher-level program - i.e., a program which allows the
Computer to pull itself up "by its own bootstraps". A program
which initializes the Computer.

break

To interrupt execution of a program. In BASIC the statement
STOP

causes a break in execution, as does pressing the BREAK key.

buffer

An area in RAM where data is accumulated for further processing.
For example, to pass data from BASIC to a disk file, and vice
versa, the data must go through a file-buffer.

buffer field

A portion of the buffer which you define as the storage area for a
buffer-field variable. Dividing a buffer into fields allows you to
pass multiple values to and from disk storage.

Appendices

8-3

Appendices

byte

The sma-llest addressable unit of memory in the Computer,
consisting of 8 consecutive bits, and capable of representing 256
different values, e.g., decimal values from Oto 255.

compressed-format

A method of storing information in less space than a standard ASCII
representation would require. An integer always requires two bytes;
a single-precision number, four; a double-precision number, 8 -
regardless of how many characters are required to represent the
numbers as text. String values cannot be stored in compressed
format.

BASIC programs in RAM and non-ASCII disk files are stored in
compressed-format, with all BASIC keywords stored as special
one-byte codes.

command file

A TRSDOS disk file with the extension /CMD. Such a file should
consist of an executable Z-80 program, since TRSDOS will load and
attempt to execute it when you type:

filenarne i*il*i
Command files can be placed on any disk; in effect, they extend
the set of TRSDOS library commands (though, of course, they
remain external to the TRSDOS system files).

close

Terminate access to a disk file. Before re-accessing the file, you
must re-open it.

data

Information that is passed to our output from a program; under
LEVEL II and DISK BASIC, there are four types of data:

• integer numbers
• single-precision floating point numbers
• double-precision floating point numbers
• character-string sequences, or just "strings"

data/device control block (DCB)

An area in RAM associated with an 1/0 buffer, containing
information the Operating System requires in order to access the
1/0 device or file.

debug

To isolate and remove logical or syntax errors from a program.

8-4

decimal

Capable of assuming one of ten states, e.g., the decimal digits
0, 1, ... ,9. Decimal (base 10) numbering is the everyday system,
using sequences of decimal digits. Decimal numbers are stored in
binary code in the Computer.

default

An action or value which is supplied by the Computer when you
do not specify an action or value to be used.

delimiter

A character which marks the beginning or end of a data item, and
is not a part of the data. For example, the double-quote symbol is
a string delimiter to BASIC.

destination

The device or address which receives the data during a data transfer
operation. For example, during a BACKUP operation, the destination
disk is the one onto which the source-disk is being copied.

device

A physical part of the computer system used for data 1/0, e.g.,
keyboard, display, line printer, cassette, disk drive, voice synthesizer.

directory

A listing of the files which are contained on a disk.

disk drive or Mini Disk drive

The physical device which writes data onto diskettes and retrieves it.

uisketfe or disk

A magnetic recording medium for mass data storage.

drive specification or drivespec

An optional field in a TRSDOS file specification and in some
TRSDOS commands, consisting of a colon followed by one of the
digits O through 3. The drivespec is used to specify which drive is to
be used for a disk read or write.

When the drivespec is omitted from a command involving a read
operation, TRSDOS will search. through all the disks for the
desired file, starting with drive 0.

When the drivespec is omitted from a command involving a write
operation, TRSDOS will generally search through all non
write-protected drives for the desired file.

Appendices

8-5

Appendices

drive number

An integer value from Oto 3, specifying one of the Mini Disk
drives. Drive 0 is closest to the Expansion Interface, and Drive 3
is farthest away. Drive O must always contain the TRSDOS
diskette, with a couple of exceptions.

dummy variable

A variable name which is used in an expression to meet syntactic
requirements, but whose value is insignificant to the programmer.

edit

To change existing information.

end of file or EOF

A marker which indicates the end of a disk file, i.e., where the
meaningful data ends and the unknown begins.

entry point

The address of a machine-language program or routine where
execution is to begin. This is not necessarily the same as the
starting address. Entry point is also referred to as the
transfer address.

expression

A meaningful sequence of one or more variables, constants,
operators and functions.

field

A user-defined subdivision of a random access file-buffer, created
and named with the FIELD statement.

field name

A string variable which has been assigned to a field in a random
access file-buffer via the FIELD statement.

file
An organized collection of related data. Under TRSDOS, a file is the
largest block of information which can be addressed with a single
command. BASIC programs and data sets are stored on disk in
distinct files.

file extension

An optional field in a file specification, consisting of a / followed by
one alphabetic and up to two alphanumeric characters; the
extension can be used to identify the file type, e.g., /BAS, /TXT,
/CIM, for BASIC, text, and core image, respectively.

8-6

filename

A required field in a file specification, consisting of one alphabetic
followed by up to 7 alphanumeric characters. Filenames are assigned
when a file is created or renamed.

file specification or filespec

A sequence of characters which specifies a particular disk file under
TRSDOS, consisting of a mandatory filename, followed by an
optional extension, password, and drivespec.

foreground task

A relatively fast routine which the Computer must execute
periodically, in sequence with other foreground tasks. Such
tasks are interrupt-driven. See background task, task, interrupt.

format

To organize a new or magnetically erased diskette into tracks and
sectors, via the TRSDOS FORMAT utility. BACKUP also implicitly
formats a blank diskette. Formatted diskettes contain 35 tracks,
each of which contains 10 sectors.

granule

The smallest unit of allocatable space on a disk, consisting of
5 sectors.

hexadecimal or hex

Capable of existing in one of 16 possible states. For example, the
hexadecimal digits are 0,1,2, .. , ,9,A,B,C,D,E,F. Hexadecimal
(base-16) numbers are sequences of hexadecimal digits. Address and
byte values are frequently given in hexadecimal form. Under DISK
BASIC, hexadecimal constants can be entered by prefixing the
constant with &H.

increment

The value which is added to a counter each time one cycle of a
repetitive procedure is completed.

input

To transfer data from outside the Computer (from a disk file,
keyboard, etc.) into RAM.

Appendices

8-7

Appendices

interrupt

A signal which causes the Computer to interrupt whatever it is doing
and perform some other specified task; when the task is completed,
the Computer will generally resume execution of the previous task.
The TRS-80 Expansion Interface includes a 25 millisecond
"heartbeat" interrupt, which is used to drive the real-time clock and
other foreground tasks. Interrupt-driven tasks can be scheduled and
assigned priorities, so that the Computer appears to be doing two
or more things "at once".

kilobyte or K

1024 bytes of memory. Thus a 12 KROM includes 12*1024=12288
bytes.

library commands

A set of overlayed TRSDOS commands which are overlayed as
needed into RAM between 5200 and 6FFF, to see which library
commands are available, use the TRSDOS LIB command:

LIB <EN>

logical expression

An expression which is evaluated as either True (=-1) or FALSE (=0).

logical record

A block of data which contains from 1 to 256 bytes, and can be
addressed as a unit, regardless of whether the logical record is
contained in a single record or spans two physical records.

machine language

The Z-80 instruction set, usually specified in hexadecimal code. All
higher-level languages must be translated into machine-language in
order to be executed by the Computer.

null string

A string which has a length of zero; For example, the assignment
A$= " II

makes A$ a null-string.

object code

Machine language derived from "source code", typically, from
Assembly Language.

8-8

octal

Capable of existing in one of 8 states, for example, the octal digits
are 0, 1, ... ,7. Octal (base-8) numbers are sequences of octal
digits. Address and byte values are frequently given in octal form.
Under DISK BASIC, an octal constant can be entered by prefixing
the octal number with the symbol &O.

open

To prepare a file for access by assigning a sequential input,
sequential output, or random 1/0 buffer to it.

output

To transfer data from inside a Computer's memory to some external
area, e.g., a disk file or a line printer.

overlay

To replace one block of code in RAM with another block. Also, the
code which replaces the previous contents of RAM. For example,
the TRSDOS system routines are stored on disk and loaded into a
common area of RAM as overlays.

parameter

Optional information supplied with a command to specify how the
command is to operate. TRSDOS parameters are placed inside
parentheses.

password

An optional field in a filespec consisting of one alphanumeric
followed by up to 7 additional alphanumeric characters. If a file
is created without a password, 8 blanks become the default
password. To access a file, you must specify the password in the
filespec.

Using the TRSDOS ATTRIB command, you can assign both update
and access passwords; the access password will grant only a
limited degree of access, while the update password grants total
access to the file. See filespec.

physical record

The smallest amount of data which can be written to a disk file or
read from it; under TRSDOS, physical records consist of 256 bytes.
Note that physical record length can be ignored by the assembly
language programmer, since TRSDOS supports logical records of
from 1 to 256 bytes in length.

Appendices

8-9

Appendices

prompt

A character or message provided by the Computer to indicate that
it's ready to accept keyboard input.

protected file

A disk file which has a non-blank password, and therefore can only
be accessed by reference to that password.

protection level

The degree of access granted by using the access password: kill,
rename, write, read, or execute.

random access memory or RAM

Semiconductor memory which can be addressed directly and either
read from or written to. "User RAM" is that portion of RAM which
is left untouched by TRSDOS and DISK BASIC code, from hex 7000
to end of memory.

real-time clock

An interrupt driven routine that keeps time by updating certain
memory locations every 25 milliseconds, regardless of what the
current background task is. At power-on, the real-time clock is set
to 00:00:00. When interrupts are disabled, the clock is stopped.

reset

To press the reset button on the rear left of the TRS-80, next to the
Expansion Interface connection. Pressing reset is equivalent to
powering up the Computer, except that the contents of user RAM
are unaffected.

resident system program

That part of TRSDOS which remains in RAM; the "executive
TRSDOS program", which calls in other TRSDOS code as needed.

read-only memory or ROM

Pre-programmed semiconductor memory which is directly
addressable but can only be read, not written to. The LEVEL II
TRS-80 includes 12K of ROM, where a bootstrap program,
LEVEL II BASIC, and other code are permanently stored.

routine

A sequence of instructions to carry out a certain function; typically,
a routine may be called from multiple points in a program. For
example: keyboard scan routine.

8-10

sector

One-tenth of a track on a diskette, containing 256 bytes of storage;
a TRSDOS "physical record".

sequential access

Reading from a disk file or writing to it "from start to finish",
without being able to directly access a particular record in the file.

statement

A complete instruction in BASIC.

string

Any sequence of characters which must be examined verbatim for
meaning: in other words, the string does not correspond to a
quantity. For example, the number 1234 represents the same
quantity as 1000+234, but the string "1234" does not. (String
addition is actually concatenation, or stringing-together, so that:
"1234" equals "1" + "2" + "3" + "4").

system file

A TRSDOS disk file with the extension /SYS. Such files are
read-protected. To avoid confusion, don't use the extension /SYS
on your own disk files.

syntax

The "grammatical" requirements for a command or statement.
Syntax generally refers to punctuation and ordering of elements
within a statement. See "Notation Conventions", General
Information, for a description of syntax abbreviations used in
this manual.

task

A relatively fundamental routine which the Computer performs
periodically or upon request.

track

One of 35 concentric circles on the disk, each of which contains
1 O sectors, or 2560 bytes of storage. The tracks are not physical
entities like grooves on a record; they are magnetic traces.

transfer address

Se.e entry point.

TRSDOS

TRS-80 Disk Operating System, pronounced "triss-doss".
TRSDOS is supplied on disk and is then loaded into RAM.

Appendices

8-11

Appendices

user RAM or user memory

See random access memory.

utility

A program or routine which serves a limited, specific purpose.
There are two extended TRSDOS utilities, FORMAT and BACKUP,
and two non-TRSDOS utilities, DISKDUMP/BAS and TAPEDISK.

write-protect

To physically protect a disk from being written to by placing a tape
over the write-protect notch.

8-12

Memory Map

"ON-BOARD"
MEMORY

EXPANSION
INTERFACE

I
I

X'OOOO

X'0400

X'3000

X'4000

X'4200

X'5200

I X7000
I
L_

X'8000

x·cooo

X'FFF F

1 KROM

11 KROM

1/0

16 KRAM

l
16 KRAM

16 KRAM

Appendices

1/0 DRIVERS AND BOOTSTRAP

LEVEL II BASIC/DISK BASIC

MEMORY MAPPED 1/0

BASIC VECTORS

TRSDOS

DISK BASIC

TRSDOS UTILITIES

USER MEMORY

GENERAL PURPOSE

USER MEMORY

AUXILIARY USER MEMORY

AUXILIARY USER MEMORY

8-13

Appendices

TRSDOS Character Tables
Bit-Pattern Codes

The following table illustrates the bit pattern for each of the 128
TRSDOS characters. The remaining 128 codes represent special
graphics and space compression characters, as described later.
See Notes.

To use the table: Combine the most significant and least significant
bit-patterns for a given character. For example, the character Q
is represented by the pattern: 10 l 000 l (decimal 81).

MOST SIGNIFICANT BITS
(b7 - b5)

000 001 010 011 100 101 110 111

0000 NULL OLE SP 0 @ p @ p

LEAST 0001 BREAK DC1 ! 1 A Q a q

SIGNIF. 0010 STX DC2 ,, 2 B R b r

BITS 0011 ETX DC3 # 3 C s C s

(b4 - b1) 0100 EOT DC4 $ 4 D T d t

0101 ENO NAK % 5 E u e u

0110 ACK SYN & 6 F V f V

0111 BEL ETB ' 7 G w g w

1000 BKSP CAN (8 H X h X

1001 HT EM) 9 I y i y

1010 LF SUB . : J z j z

1011 VT ESC + ; K t k • 1100 FF HOME , < L t I t
1101 CR BOL - ~ M ~ m ~

1110 CURON EREOL > N _.. n _..
1111 CUROFF EREOF I ? 0 - 0 DEL

8-14

Appendices

Decimal/Hexadecimal Codes

Code Code Code
Dec. Hex. Char. Dec. Hex. Char. Dec. Hex. Char.

0 00 NULL 32 20 SPACE 64 40 @

1 01 BREAK 33 21 65 41 A
2 02 STX 34 22 66 42 B
3 03 ETX 35 23 # 67 43 C
4 04 EQT 36 24 $ 68 44 D
5 05 ENO 37 25 % 69 45 E
6 06 ACK 38 26 & 70 46 F
7 07 BEL 39 27 71 47 G
8 08 BKSP 40 28 72 48 H
9 09 HT 41 29 73 49 I
10 QA LF 42 2A * 74 4A J
11 OB VT 43 2B + 75 4B K
12 oc FF 44 2C 76 4C L
13 OD CR 45 2D 77 4D M
14 OE CURON 46 2E 78 4E N
15 OF CUROFF 47 2F 79 4F 0
16 10 OLE 48 30 0 80 50 p
17 11 DC1 49 31 1 81 51 Q
18 12 DC2 50 32 2 82 52 R
19 13 DC3 51 33 3 83 53 s
20 14 DC4 52 34 4 84 54 T
21 15 NAK 53 35 5 85 55 u
22 16 SYN 54 36 6 86 56 V
23 17 ETB 55 37 7 87 57 w
24 18 CAN 56 38 8 88 58 X
25 19 EM 57 39 9 89 59 y
26 1A SUB 58 3A 90 5A z
27 1B ESC 59 3B 91 5B • 28 1C HOME 60 3C < 92 5C t
29 1D BOL 61 3D 93 5D
30 1E EREOL 62 3E > 94 5E
31 1F EREOF 63 3F ? 95 5F

Note: 96-127 (hex 60-7F) are lower-case counterparts to 64-95 (hex 40-SF).; only
upper-case characters are displayable.

8-15

Appendices

Notes

The TRSDOS character set may be subdivided into the following
functional groups:

decimal code hex code function

0-31
32-95
96-127
128-191
192-255

00-lF
20-5F
60-7F
80-BF
CO-FF

Control characters
Keyboard/display characters
Non-printing characters (code-32 is printed)
Graphics characters
Space-compression codes

The following control characters may be entered directly from the
keyboard:

8-16

character

BREAK
BKSP
HT
LF
CR
CAN

EM

SUB
ESC

EREOF
SP

key(s)

i=hUhUI

Hhii;I
t1:iiil !II
t1:0il ICI
E*Uil D
i-1Uiil D
i•Oi=hi;I
SPACE-BAR

For a description of the graphics characters, run the following
program. If you do not have a line printer connected, change
all LPRINTs to PRINTs and use the shift-@ key to pause the
display.

10 CLS: DEFINT A-Z
20 FORI=128 TO 191
30 POKE 15360, I
35 LPRINT CHR$(138)
40 LPRINT"GRAPHICS CODE# 11

; I
45 LPRINT CHR$(138)
50 A1=POINT(0,0): A2=POINT<1,0)
60 A3=POINT<0,1): A4=POINT<1,1)
70 A5=POINT(0,2): A6=POINT(1,2)
80 LPRINTTAB<8>CHR$(A1*(-40)+48);CHR$(A2*(-40)+48)
90 LPRINTTAB<8)CHR$(A3*(-40)+48);CHR$(A4*(-40)+48)
100 LPRINTTAB(8)CHR$(A5*(-40)+48);CHR$(A6*(-40)+48)
110 NEXT

The space-compression codes provide a compact means of
representing strings of blanks from zero to 63 blanks.
For example, CO represents zero blanks; Cl, 1 blank; C2,
2 blanks; FF, 63 blanks.

Appendices

8-17

Appendices

Base Conversions
The following table lists base conversions for all one-byte values.

DEC. BINARY HEX. OCT. DEC. BINARY HEX. OCT.
----------------------------- -----------------------------

0 00000000 00 000 43 00101011 2B 053
1 00000001 01 001 44 00101100 2C 054
2 00000010 02 002 45 00101101 2D 055
3 00000011 03 003 46 00101110 2E 056
4 00000100 04 004 47 00101111 2F 057
5 00000101 05 005 48 00110000 30 060
6 00000110 06 006 49 00110001 31 061
7 00000111 07 007 50 00110010 32 062
8 00001000 08 010 51 00110011 :n 063
9 00001001 09 011 52 00110100 34 064
10 00001010 0A 012 53 00110101 35 065
11 00001011 08 013 54 00110110 36 066
12 00001100 0C 014 55 00110111 37 067
13 00001101 0D 015 56 00111000 38 070
14 00001110 0E 016 57 00111001 39 071
15 00001111 0F 017 58 00111010 3A 072
16 00010000 10 020 59 00111011 38 073
17 00010001 11 021 60 00111100 3C 074
18 00010010 12 022 61 00111101 3D 075
19 00010011 13 023 62 00111110 3E 076
20 00010100 14 024 63 00111111 3F 077
21 00010101 15 025 64 01000000 40 100
22 00010110 16 026 65 01000001 41 101
23 00010111 17 027 66 01000010 42 102
24 00011000 18 030 67 01000011 43 103
25 00011001 19 031 68 01000100 44 104
26 00011010 1A 032 69 01000101 45 105
27 00011011 18 033 70 01000110 46 106
28 00011100 1C 034 71 01000111 47 107
29 00011101 1D 035 72 01001000 48 110
30 00011110 1E 036 73 01001001 49 111
31 00011111 1F 037 74 01001010 4A 112
32 00100000 20 040 75 01001011 4B 113
33 00100001 21 041 76 01001100 4C 114
34 00100010 22 042 77 01001101 4D 115
35 00100011 23 043 78 01001110 4E 116
36 00100100 24 044 79 01001111 4F 117
37 00100101 25 045 80 01010000 50 120
38 00100110 26 046 81 01010001 51 121
39 00100111 27 047 82 01010010 52 122
40 00101000 28 050 83 01010011 53 123
41 00101001 29 051 84 01010100 54 124
42 00101010 2A 052 85 01010101 55 125

8-18

Appendices

DEC. BINAF.'.)1 HE)(OCT. DEC. E:IHA!s:)' HEX. OCT.
----------------------------- -----------------------------

86 011310110 56 126 13:4 ll)(n301HJ 86 206
C1-, ,_, (131131(1111 c-7

.. .,11 127 1-•,c-. .:::.._, 10000111 87 207
88 010110130 58 13:0 136 100(11000 88 210
89 01011001 59 1J:1 13:7 il:.113131001 89 211
913 01011010 5A 132 13t: 11313011311:,'I 8A 212
91 01011011 5E: 133: 139 113001011 8B 213
92 131011100 ~.c 134 140 10001100 8C 214
93: 010111(11 5[i 13:5 141 1(11301101 1::[i 215
94 011311110 5E 136 142 10001110 8E 216
qc:
-· ·-· 011:':111111 5F 13:7 143: 10001111 8F 217
96 131100000 60 140 144 11:::1(110013(1 9(1 220

97 01100001 61 141 145 11:::1131(1001 91 221
98 0110(1010 62 14;;;: 146 113r,11301e1 9·~· - ,:.. 222

147 10010011 9:~ .-1.-,-;-
~~.::-99 01100011 63 143:

148 HKt10100 94 224 10(1 0110010(1 64 144 149 1001131131 95 225
101 011013101 .-c, 145 1513 113131011(1 96 226 t;:.._,

102 01113011(1 66 146 151 10010111 97 227
1((:\: 01100111 67 147 1 c:-,-, ._1.::. 1(1131101)(1 98 230
11::14 01:lJ:W:::1013 68 150 153 1(1011001 99 231
105 131101001 69 151 154 11~11)111)10 9A .-1-.-.-. "..:--~ 106 01101010 6A 1 c-,-,

9E: 233:
~•,:..

155 113011011 107 t)11(111:H1 68 15:: 156 10011100 9C 23:4
11:::18 01101100 6C 154 157 101311101 9D 2:~5 1139 ~H1(111(11 6[) 155

158 1(11:111111:::1 9E 23:6 110 011011113 6E 156 159 10011111 9F .-,-:,.-,
~.::.., 111 011131111 6F 157

160 10113(11300 A0 240 112 1311113(100 70 160
161 1(1100001 Ai 241 113: 01110(101 71 161
162 10100010 A2 242 114 01110010 72 162 16:(10100011 A3 243:

115 0111(1t111 73 163:
164 10100100 A4 244 116 01111310(1 74 164
165 1131t10101 A5 245 117 01110101 75 165
166 113100110 A6 246 118 011113110 76 166
167 10100111 A7 247 119 0111(1111 77 167
168 10101000 A8 250 120 01111(113(1 78 170 169 10101001 A9 251

121 (111110(11 79 171 1713 10101010 AA 252
122 01111(110 7A 172 171 10101011 AB 253:
12:(01111(111 78 173: 172 11311311130 AC 254
124 01111100 7C 174 17:~ 1011)1101 AD 255
125 01111101 7D 175 174 10101110 AE 256
126 01111110 7E 176 175 10101111 AF 257
127 01111111 7F 177 176 10110000 BO 260
12€: 10000(100 8(1 200 177 1(1110001 81 261
129 1000(1001 81 201 178 10110010 B2 262
13:0 H-,000(t10 82 202 179 10111)011 E:3 263
131 10000011 83: 203 180 10110100 B4 264
132 H:11300100 84 204 181 1011(1101 B5 265
133 10000101 85 205 182 10110110 B6 266

8-19

Appendices

DEC. BINARY HEX. OCT. DEC. BINARY HEX. OCT.
----------------------------- -----------------------------
183 10110111 87 267 219 11011011 DB 3:33:
1:::4 10111000 88 270 220 11011100 DC 334
185 10111001 89 271 221 11011101 [)[) 3J5
186 10111010 BA 272 222 11011110 DE JJ:6
187 10111011 BB 273 223: 11011111 DF 337
188 1(1111100 BC 274 224 11100000 E0 3:40
1:::9 10111101 BD 275 225 11100001 E1 341
190 10111110 BE 276 226 11100010 E2 342
191 10111111 BF 277 227 11100011 E3 :(43
192 110000130 C0 J:00 228 11100100 E4 3:44
193: 11000001 Ci 301 229 11100101 E5 3:45
194 11000010 C2 302 230 11100110 E6 3:46
195 11000011 r•-:• -·~ 303: 231 111130111 E7 347
196 11000100 CA 3134 232 11101000 E8 350
197 11000101 C5 3:135 233: 11101001 E9 351
198 11000110 C6 306 234 11101010 EA 352

235 11101011 EB --c--•

199 11€11:10111 C:7 307 .::.. ,..::-

200 111301000 C:8 310 23:6 11101100 EC 3:54
217 11101101 ED 355

201 11001001 C9 311 238 11101110 EE 356
202 11001010 CA 312 2:::~9 11101111 EF 357
203 11001011 CB JB 240 11110000 F0 360
204 11001100 cc 314 241 11110001 Fi 361
205 11001101 (:[) 315 242 11110010 F2 362
2136 111301110 CE 316 243: 11110011 FJ: 363
207 11001111 CF 3:17 244 11110100 F4 364
208 1101000(1 D0 120 245 11110101 F5 365
209 111310001 Di 321 246 1111011(1 F6 366
21(1 11010010 D2 322 247 11110111 F7 367
211 1101(1011 [)]. 3:23 248 11111000 rn 370
212 11(110100 [i4 :~24 249 11111001 F9 3:71
213 11010101 D5 3:25 250 11111010 FA 372
214 111310110 D6 326 251 11111011 FB 373:
215 11010111 D7 3:27 252 11111100 FC 3:74
216 11011000 D8 3:3:0 253: 11111101 FD 375
217 11011001 D9 3:31 254 11111110 FE -. ..,,

~ I t,
218 11011010 DA 332 255 11111111 FF 377

8-20

Index
for
TRSDOS&
DISK BASIC
Reference
Manual

For: TRSDOS Version 2.1
DISK BASIC Version 1.1

I
N
D
E
X

Index

Subject Page

&H, BASIC hex constant prefix 7-6

&O, BASIC octal constant prefix 7-6

<EN>, carriage return character 7-38

< LF >, line-feed character 7-38

access, . 8-2
random 7-65, 8-11
sequential 7-60, 8-10

address 8-2

alphanumeric 8-2

argument 8-2

array 8-2
-notation 1-4

ASCII 8-2
format 7-32, 8-2

assembly-language
I/0, TRSDOS 6-5
access from BASIC 7-14, 7-20

ATTRIB, TRSDOS command4-12

AUTO, TRSDOS command4-11

BACKUP, TRSDOS utility
abbreviated instructions for 2-16
detailed description of 5-2
Important Notice 2-17

background task 8-2

backup disk . 8-3

Base Conversions,
decimal/binary /octal/hex 8-18

BASIC, TRSDOS
command file 1-2, 3-4, 7-2

BASIC2, TRSDOS command 4-2

baud 8-3

binary 8-3

bit 8-3

blocking of logical records
under TRSDOS 6-3, 6-7

bootstrap program 8-3

break 8-3

buffer 6-5, 6-6, 7-2, 7-33 ff, 8-3

byte 8-4

cassette 1/0 under
DISK BASIC 7-5, 7-10

2

Subject Page

CLOCK, TRSDOS command4-14

clock, real time, see real-time clock

CLOSE, BASIC statement 7-36

close a file 6-11, 7-36, 8-4

CMD"D", BASIC statement 7-7

CMD"R", BASIC statement 7-10

CMD"S", BASIC statement 7-10

CMD"T", BASIC statement 7-1 0

command
file 3-7, 8-4
format 3-5

command,
TRSDOS library 4-2 ff, 8-8
TRSDOS system 4-11 ff

compressed format, BASIC 7-31, 8-4

COPY, TRSDOS command4-15

CVD, BASIC function 7-54

CVI, BASIC function 7-54

CVS, BASIC function 7-54

data 8-4

data/device control block
(DCB) 6-6, 8-4

data diskette 5-4

DATE, TRSDOS command4-15

DEBUG, TRSDOS command 4-3

debug 8-4

decimal 8-5

default . 8-5

delimiter, 6-6, 8-5
BASIC INPUT# 7-40

DEFFN, BASIC statement 7-11

DEFUSR, BASIC statement 7-14

destination 8-5
diskette 5-2

DEVICE, TRSDOS command4-16

device 8-5

DIR, TRSDOS command,4-16

directory 8-5

Subject

DISK BASIC

Page

error messages 7-77
ROM calls 7-22
versions and releases 1-6

DISKDUMP/BAS, auxiliary
utility program 5-8 ff

diskette,
data 2-10
TRSDOS software 2-10

diskette 2-5 ff, 8-5
care 2-8
organization 2-6, 6-2
specifications 2-10

drive number 8-6

drive numbering 2-5

drive specification 3-6, 3-8, 8-5

drive zero . 2-5

dummy variable 8-6

DUMP, TRSDOS command4-18

end of file
(EOF)4-16,6-6,6-9, 7-55,8-6

entry point4-18, 5-6, 6-8, 7-14, 8-6

EOF, BASIC function 7-55

ERROR, BASIC statement 7-6

error messages,
BASIC 7-6, 7-77
TRSDOS 6-12

expression . 8-6

FIELD, BASIC statement 7-47

field, 8-6
overlapping 7-76

field name 7-48, 7-67, 8-6

file, TRSDOS 3-3, 6-3 ff, 8-6
extension 3-6 ff, 7-32, 8-6
name 3-6, 8-7
specification 3-6 ff, 6-6, 8-7

foreground task3-2, 4-9, 4-10, 8-7

FORMAT, TRSDOS utility 5-4 ff

format 5-4 ff, 8-7

FREE, TRSDOS command4-19

Index

Subject Page

GET, BASIC statement 7-49

granule 4-16, 4-19, 5-4, 6-3, 6-12, 8-7

hexadecimal 8-7
constants, BASIC 7-6

increment 8-7

input 8-7

INPUT#, BASIC statement 7-37

INSTR, BASIC function 7-15

interrupt 7-5, 7-10, 8-8

KILL, BASIC command 7-28

KILL, TRSDOS command4-19

kilobyte 8-8

LIB, TRSDOS command4-19

library command, TRSDOS4-11

LINE INPUT, BASIC statement 7-16

LINE INPUT #, BASIC statement 7-42

LIST, TRSDOS command4-20

LOAD, BASIC command 7-28

LOAD, TRSDOS command4-20

LOF, BASIC function 7-56

LSET, BASIC statement 7-53

machine language, 8-8
dump to disk4-18
load from disk4-20
reserve RAM for 7-3
access routines from

BASIC 7-14, 7-20

Master Password4-21, 5-2

MERGE, BASIC command 7-29

MID$=, BASIC statement 7-17

Mini Disk 2-1 ff
connection 2-3
operation 2-5
sp~cifications 2-10

MKD$, BASIC function 7-57

MK!$, BASIC function 7-57

MKS$, BASIC function 7-57

Notation 1-3, 6-5

null string 8-8

3

Index

Subject Page

object code 8-8 and see machine
language

octal 8-9
constants, BASIC 7-6

OPEN, BASIC statement 7-34

open a file 6-6, 6-9, 7-33, 7-34, 8-9

parameter . 8-9

password 3-6, 3-8, 4-12, 4-13, 8-9

PRINT, TRSDOS command4-21

PRINT #, BASIC statement 7 43

prompt 8-10

PROT, TRSDOS command4-21

protected file 6-12, 8-10

protection level4-12, 4-22, 8-10

PUT, BASIC statement 7-50

random access 7-65

random access memory (RAM) 8-10
allocation 1-2, 34, 6-2

random access memory (RAM),
BASIC program storage in 7-32
reserving for machine language code

under DISK BASIC 7-3

read only memory (ROM) 8-10
calls from BASIC 7-22
calls from TRSDOS 6-8 ff
organization 6-2

real-time clock,
in Expansion Interface 1-2
memory location of 4-9
to display4-14
to set4-23
to turn off 7-10
to turn on 7-10

record, TRSDOS
physical 6-4, 6-7, 8-9
logical 6-7, 8-8

release . 1-6

RENAME, TRSDOS command4-22

reset 8-10

resident program3-4, 8-10

ROM (see read only memory)

4

Subject Page

RSET, BASIC statement 7-53

RUN"program", BASIC command 7-31

SAVE, BASIC command 7-31

sector, diskette 2-6, 8-11

sequential access 7-60, 8-11

statement, BASIC 8-11

string ... 8-11

subrecord 7-71

syntax, 8-11
TRSDOS command 3-5

system
command ·4-22
file3-7, 8-11
routine 6-5 ff

T APEDISK, auxiliary utility 5-6

task,
background 8-2
foreground 3-2, 4-9, 4-10, 4-14, 8-7

TIME, TRSDOS command •4-23

TIME$, BASIC function 7-19

TRACE, TRSDOS command4-10

transfer address4-18, 8-11

track, diskette 2-6, 8-11

TRSDOS
assembly I/O 6-5 ff
error messages 6-12
file specification 3-6
library commands4-11
memory organization 6-2
RAM allocation3-4, 8-13
system commands 4-2
utilities 5-1 ff
versions and releases 1-6

USING, BASIC PRINT
format modifier 7-46

USR, BASIC function 7-20

utility
TRSDOS 5-2
auxiliary 5-6

VERIFY, TRSDOS command4-24

versions and releases 1-6

write protect . 2-6

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE DISTRIBUTED ON AN
"AS IS" BASIS WITHOUT WARRANTY

Radio Shack shall have no liability or responsibility to customer or any other
person or entity with respect to any liability, loss or damage caused or alleged to
be caused directly or indirectly by computer equipment or programs sold by
Radio Shack, including but not limited to any interruption of service, loss of
business or anticipatory profits or consequential damages resulting from the use
or operation of such computer or computer programs.
NOTE: Good data processing procedure dictates that the user test the program,

run and test sample sets of data, and run the system in parallel with the
system previously in use for a period of time adequate to insure that
results of operation of the computer or program are satisfactory.

LIMITED WARRANTY
Radio Shack warrants for a period of 90 days from the date of delivery
to customer that the computer hardware described herein shall be free
from defects in material and workmanship under normal use and service.
Th is warranty shall be void if this unit's case or cabinet is opened or if
the unit is altered or modified. During this period, if a defect should
occur, the product must be returned to a Radio Shack store or dealer
for repair. Customer's sole and exclusive remedy in the event of defect
is expressly limited to the correction of the defect by adjustment, re
pair or replacement at Radio Shack's election and sole expense, except
there shall be no obligation to replace or repair items which by their
nature are expendable. No representation or other affirmation of fact,
including but not limited to statements regarding capacity, suitability
for use, or performance of the equipment, shall be or be deemed to be a
warranty or representation by Radio Shack, for any purpose, nor give
rise to any liability or obligation of Radio Shack whatsoever.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT,
THERE ARE NO OTHER WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PUR
POSE AND IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR
LOSS OF PROFITS OR BENEFITS, INDIRECT, SPECIAL, CONSE
QUENTIAL OR OTHER SIMILAR DAMAGES ARISING OUT OF
ANY BREACH OF THIS WARRANTY OR OTHERWISE.

RADIO SHACI< MA DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA

280 316 VICTORIA ROAD
RYOALMERE. NS W 2116

TANDY CORPORATION
BELGIUM

PARC INOUSTRIEL OE NANINNE
5140 NANINNE

U K
BILSTON ROAD WEONESBURY
WEST MIDLANDS WSlO 7JN

PRINTED IN U.S.A.

	Cover & Contents
	Section 1 - General Information
	Section 2 - Mini Disk Operation
	FDC Schematics

	Section 3 - TRSDOS An Overview
	Section 4 - TRSDOS Commands
	Section 5 - Extended Utilities
	Section 6 - TRSDOS Technical Information
	Section 7 - DISK BASIC
	Introduction
	Enhancements to LEVEL II BASIC
	Disk-Related Features
	Sequential Access Techniques
	Random Access Techniques
	DISK BASIC Error Messages

	Appendices
	Glossary
	Memory Map
	TRSDOS Character Tables
	Base Conversions

	Index

